
Mark–to–Market Reinsurance and Portfolio Selection:

Implications for Information Quality∗

Bong-Gyu Janga, Kyeong Tae Kima and Hyun–Tak Leeb,†

April, 2017.

Abstract

This paper investigates the optimal mark–to–market reinsurance and asset investment strategies

for insurers with complete or partial information on expected return. The insurer with partial

information is assumed to have prior belief on the expected return and to update her posterior

beliefs by exploiting its price information. We show that the strategies of the insurer with partial

information can be highly dependent on prior belief, and that variation in posterior beliefs gives

rise to her counter–cyclical investment demand. By comparing the two insurers’ strategies, we show

that insurer’s utility gain by the information acquisition is a concave function with respect to prior

belief. This conclusion can be explained by the relative importance between reinsurance costs and

demands on precautionary saving.
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1. Introduction

Insurance companies and pension funds have paid much attention to asset–liability management,

during the recent financial crisis in particular. For example, the OECD Insurance and Private

Pension Committee has advised insurers to not only meet liability obligations to policyholders but

also to mitigate several risk exposures. This new regulatory trend gives rise to risk–based capital

requirements along with quantitative and qualitative provisions (OECD, 2015). A central aspect of

the capital requirements is to determine proper discount rates (or expected returns) used to adjust

assets and liabilities on a market basis, namely a mark–to–market valuation.

Discount rates vary over time (Cochrane, 2011). The capital requirements subject to variation

in expected returns can cause portfolio manages to become increasingly conservative. For exam-

ple, Solvency II in European countries established a guideline that capital must cover unexpected

losses over a one–year horizon with a probability 99.5%. Even with strong savings accumulations,

insurers, traditionally recognized as long–term institutional investors, also desire to increase their

reserve funds against future potential losses. Indeed, investment strategy can be used together with

reinsurance strategy as an important hedging tool in reducing insurance claims risk. Motivated by

the recent regulatory trend, this paper studies the optimal mark–to–market reinsurance and asset

allocation strategies for risk-averse insurers.

Two different types of models are considered: a model for an insurer with complete information

on the expected return from risky investment (the CI model) and a model for an insurer with partial

information (the PI model). Basically, we assume that the expected return evolves by following a

two–state hidden Markov chain, but that return volatility does not change over time.1 The insurer

under the PI model is assumed not to exactly observe time variations in the expected return, but to

update her beliefs on the expected return by exploiting information on the risky asset prices. The

insurers are assumed to have utility preference of constant absolute risk aversion (CARA) type and

aim to maximize their utility by controlling the mark–to–market proportional reinsurance rates

and risky investment amount.

Precisely, this paper is a rare research finding an intersection between studies on information

quality in asset pricing theory and those on insurer’s optimal behavior.2 Conventional studies

1 Merton (1980) shows that expected return is harder to estimate than is return volatility.
2 A large body of the literature has provided evidence for stochastically changing investment opportunities driven

by the first and second moments of risky assets or stochastic real interest rates (Korn and Kraft, 2002; Campbell
et al., 2004; Chacko and Viceira, 2005). In this regard, information–quality implications have been extensively studied
in asset pricing theory (David, 1997; Ai, 2010) and on optimal portfolio choice (Honda, 2003; Liu, 2011).
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have commonly assumed that insurers have complete information on insurance/reinsurance and

financial markets,3 which incurs no estimation risk over the indefinite future. Accordingly, the

insurers considered in the existing literature can only make myopic decisions without a hedging

motive under complete information. To see this clearly, we introduce the CI model which employs

a two–state regime-switching asset price process, and compare the results by the CI model with

those by the PI model.

This paper has three main contributions to the literature. First, we find an explicit representa-

tion of certainty equivalent wealth (CEW) for the insurer with partial information. We show that

the CEW can be decomposed into two components: a components by reinsurance costs and the

other component by the insurer’s demands on precautionary saving. This representation can help

better understand her mark–to–market reinsurance and investment strategies in a logical way. For

instance, the decomposition leads us to conclude that

• an insurer with low risk aversion can be more affected by the demand on precautionary saving

than reinsurance costs, and

• a large correlation between financial assets and insurance claims improves a risk–sharing

effect.

Second, we show that the mark–to–market reinsurance strategy under the PI model depends on

insurer’s prior belief on a pro–cyclical basis. However, we show that the mark–to–market investment

strategy can be counter–cyclical. The counter–cyclical investment strategy, caused by changes in

future investment opportunities, can help enhance the risk–based capital requirements by reducing

potential pro–cyclical overreaction, especially during economic recessions (OECD, 2015).

Third, by comparing the two insurers’ strategies, we show that insurer’s utility gain by the

information acquisition is a concave function with respect to prior belief. This conclusion can be

explained by the relative importance between reinsurance costs and demands on precautionary

saving.

The rest of the paper is organized as follows. Section 2 provides our basic setting and formulates

the insurer’s problems. Sections 3 and 4 introduce the CI model and the PI model and show insurer’s

optimal strategies, respectively. Section 5 provides numerical implication in relation to information

quality by comparing the two models. Section 6 concludes.

3 See Cao and Wan (2009), Gu et al. (2010), and Liang et al. (2011).
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2. The Basic Set-Up

2.1. Financial Market

The financial market is frictionless and has two investment assets, one risk–free asset (bond)

and one risky asset (stock). The risk–free asset price, Bt, evolves by

dB(t) = rB(t)dt,

with a constant instantaneous interest rate r. The return of the risky asset evolves by

dR(t) = μ(t)dt+ σdWR(t), (1)

where μ(t) is a stochastic process, σ > 0 is a constant parameter, and WR(t) is a standard Brownian

motion. An insurer considered here is a price-taker in the financial market.

2.2. Insurance Claim

The insurer pays insurance claims to policyholders as a return service of receiving some insurance

premium. We assume there are sufficiently many policyholders so that the arrival of insurance

claims are quite frequent. Thus, we can take the diffusion model in Iglehart (1969) as the cumulative

insurance claims C(t) satisfying

dC(t) = αdt− βdWC(t),

where α > 0 is its expected growth rate, β > 0 is its constant volatility, and WC(t) is a standard

Brownian motion. We assume the exogenous shocks on the stock returns and the insurance claims

have a correlation of ρ, that is,

dWR(t) · dWC(t) = ρdt.

2.3. Reinsurance

A reinsurer can take all reinsurance demands of the insurer, and the insurer has a proportional

reinsurance strategy. Given a time-t reinsurance rate as ε(t), the reinsurer pays ε(t)dC(t)-dollar

to policyholders for the infinitesimal time period of [t, t + Δt) and the insurer pays the rest, i.e.,

(1− ε(t))dC(t).
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We assume the insurer’s safety loading is θ ≥ 0, and the reinsurer’s safety loading is η ≥ 0.

Then, the insurance premium pI(t) must be

pI(t) = (1 + θ)α,

and the reinsurance premium pO(t) must be

pO(t) = (1 + η)αε(t).

We take the assumption of η ≥ θ; otherwise, the insurer’s cheapest strategy would be to take a

perfect reinsurance strategy, i.e., ε(t) = 1.

2.4. The Insurer’s Goal

Taking all considerations together, the insurer’s surplus process S(t) satisfies

dS(t) = pI(t)dt− (1− ε(t))dC(t)− pO(t)dt

= (θ − ηε(t))αdt+ β(1− ε(t))dWC(t),

and thus, the insurer’s wealth, X(t), evolves as

dX(t) = [rX(t) + (μ(t)− r)π(t) + (θ − ηε(t))α]dt+ β(1− ε(t))dWC(t) + σπ(t)dWR(t), (2)

where π(t) is the dollar investment amount in the risky asset.

The insurer’s goal is to maximize her utility U(·) with respect to terminal wealth X(T ) by

controlling reinsurance and portfolio strategies, (ε(t), π(t)). The insurer’s utility preference is a

CARA type:

U(x) = −1

γ
e−γx,

where γ is the coefficient of absolute risk aversion. In the long run, the goal is to find

sup
ε,π

Et,x[U(X(T ))],

under the condition of Equation (2). Here, Et,x[·] is an expectation operator conditioned on the

time-t wealth X(t) = x under a real probability measure P.
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3. The CI Model: A Model with Complete Information

3.1. A Completely Informed Insurer

As a benchmark model, we first explore a model of optimal reinsurance and portfolio selection

under complete information (henceforth, the CI model). We characterize the CI model as a two–

state regime–switching model in which the expected return of the risky asset stochastically jumps

between two states.

Suppose that Y (t) follows a observable Markov chain with two states: High regime (or regime

H), and Low regime (or regime L). In the CI Model, we take the assumption that the expected

return of the risky asset satisfies

dR(t) = μidt+ σdWR(t),

where μi ≡ μ(Y (t) = i) for i ∈ {H,L} satisfying μH > μL. Regime i jumps to regime j (j �= i) for

i, j ∈ {H,L} with intensity λi. Hence, for a infinitesimal length of time Δt, μi remains unchanged

with probability of 1−λiΔt or shifts to μj (j ∈ {H,L}, j �= i) with probability of λiΔt. We assume

that such Poisson-type jumps independently occur each other and are independent of any market

risks (WR(t)) and the insurance claims risk (WC(t)).

In the CI model, all information concerning market risk, insurance claims risk, and regime risk

is assumed to be immediately revealed to the insurer. Specifically, the insurer has full information

confidence on the filtration of

F(t) = FWR,Y (t)×FWC (t),

where FWR,Y (t) stands for the filtration generated by information of the return shocks WR(u) and

regime jumps Y (u) up to time u ≤ t (t ∈ [0, T ]), and FWC (t) is the filtration generated by the

information of insurance claims shocks WC(t).

3.2. The Insurer’s Optimal Strategies

The insurer’s problem under the CI model is to find

Vi(t, x) = sup
εi,πi

Et,x[U(X(T )],

subject to

dX(t) = [rX(t) + (μi − r)πi + (θ − ηεi(t))α]dt+ β(1− εi)dWC(t) + σπidWR(t),
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by taking the reinsurance and portfolio strategies (ηi, πi) in each regime i ∈ {H,L}.
The dynamic programming principle yields a system of the two Hamilton–Jacobi–Bellman

(HJB) equations for the value functions Vi:

Vi,t + sup
εi,πi

[
{rx+ (μi − r)πi + (θ − ηεi)α}Vi,x

+
1

2
{β2(1− εi)

2 + σ2π2
i + 2ρβ(1− εi)σπi}Vi,xx + λi(Vj − Vi)

]
= 0

(3)

with the two terminal conditions

Vi(T,X(T )) = U(X(T )).

Here, Vi,t and Vi,x are respectively the first derivatives with respect to time t and wealth x, and

Vi,xx is the second derivative with respect to wealth. The first–order conditions lead us to the

optimal strategies:

ε∗i =
[αση − ρβ(μi − r)

β2σ(1− ρ2)

] Vi,x

Vi,xx
+ 1, and π∗

i =
[ραση − β(μi − r)

βσ2(1− ρ2)

] Vi,x

Vi,xx
. (4)

Theorem 1. The value function in regime i ∈ {H,L} is

Vi(t, x) = −1

γ
e−γc(t)(x+fi(t)),

where
c(t) = er(T−t),

and fi(t) satisfies

f ′
i(t)− rfi(t) +

e−r(T−t)

γ
λi

[
1− e−γ exp{r(T−t)(fj(t)−fi(t))}

]
+ hi(t) = 0, fi(T ) = 0, (5)

for j ∈ {H,L} (j �= i) and

hi(t) = α(θ − η) +
e−r(T−t)

γ(1− ρ2)

[
(μi − r)2

2σ2
− αηρ(μi − r)

βσ
+

α2η2

2β2

]
.

Proof. See Appendix A. �

Theorem 1 shows that the values of fi(t) can examine the insurer’s different behaviors across
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regimes.4 In Section 5.4, we will compare fi(t) derived from the CI model with f(t, p) derived from

a partial information model (henceforth, the PI model).

4. The PI Model: A Model with Partial Information

4.1. A Partially Informed Insurer

Contrary to the CI model, the model with partial information (the PI model) takes the assump-

tion that the insurer does not know exactly the current regime Y (t) and, thus, the corresponding

expected rate of risky return, μ(t). We assume that the insurer can infer the current regime from

the market information.

In this case, the information set the insurer access can be represented as

G(t) = FWR(t)×FWC (t)},

where FWR(t) is the filtration generated by the past history of the realized risky returns.5 Instead,

she exploits her own prior belief obtained from the market information, FWR(t), in order to infer

the current regime of the financial market. We define the time–t prior belief, p(t), as the probability

of regime H inferred from the past information:

probability of {Y (t) = H| G(t)}.

Accordingly, the resulting filtered expected return μ̄(t) corresponds to a weighted average of μi for

i ∈ {H,L}:

μ̄(t) ≡ E [μ(t)|G(t)] = p(t) · μH + (1− p(t)) · μL = μL + (μH − μL)p(t).

We now can apply a non–linear filtering theory in Liptser and Shiryaev (2001) so that all the

parameters are adapted to the filtration G(t). We employ an innovation process generated by the

insurer’s prior belief on the current regime as

ŴR(t) =

∫ t

0

dR(s)− μ̄(s)ds

σ
.6

4 We found fi by utilizing a simple numerical scheme.
5 Clearly, FWR(t) ⊂ FWR,Y (t), implying that the information set of the CI model is bigger than that of the PI

model.
6 By the Girsanov theorem, ̂WR(t) serves as a new Brownian motion under a new measure and the filtration
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Then we can rewrite the filtered return dynamics as

dR(t) = μ̄(t)dt+ σdŴR(t). (6)

The insurer’s posterior belief on the current regime follows the relationship of

dp(t) = [λL − (λH + λL)p(t)]dt+
μH − μL

σ
p(t)(1− p(t))dŴR(t).

7 (7)

Note that the insurer’s belief p(t) and the risky asset prices R(t) are perfectly correlated under the

PI model, implying that the financial market under the PI model is complete from the insurer’s

point of view. In contrast, the market under the CI model is incomplete because there is no financial

vehicle for hedging the regime risk.

One advantage of incorporating the non-linear filtering theory into the model is that we can

consider a positive learning effect between the realized and expected risky returns. Specifically, the

covariance between realized risky returns and the revision in expected risky returns must be

Cov(dR(t), dμ̄(t)) = (μH − μL)
2p(t)(1− p(t)) ≥ 0, for p(t) ∈ [0, 1].

The learning effect in the PI model is a concave function with respect to the prior belief, whereas

it does not exist under the CI model.8

4.2. The Insurer’s Optimal Strategies

The insurer’s problem under the CI model is to find the value function V (t, x, p):

V (t, x, p) = sup
ε,π

Et,x,p[U(X(T ))]

subject to

dX(t) = [rX(t) + (μ̄(t)− r)π(t) + (θ − ηε(t))α]dt+ β(1− ε(t))dWC(t) + σπ(t)dŴR(t),

F̂WR(t) generated by ̂WR(t) is equivalent to the filtration FR(t). See Theorem 9.1 of Liptser and Shiryaev (2001)
for the details.

7 David (1997) shows that Equation (7) satisfies Lipshitz and growth conditions and, thus, a unique solution exists
although it is hard to obtain the explicit distribution for p(t). More properties regarding the posterior belief can be
obtained from David (1997), Honda (2003), and Liu (2011).

8 The dependence on the prior belief contrasts with Zhang et al. (2012), who consider the case where the learning
effect does not change over time. See pp. 203 of Zhang et al. (2012).
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where Et,x,p[·] is the expectation conditioned on X(t) = x and prior belief p(t) ≡ p.

The HJB equation is

Vt + sup
ε,π

[
{rx+ (μ̄− r)π + (θ − ηε)α}Vx +

1

2
{β2(1− ε)2 + σ2π2 + 2ρβ(1− ε)σπ}Vxx

+{λL − (λH + λL)p}Vp +
(μH − μL)

2

2σ2
p2(1− p)2Vpp + {(μH − μL)πp(1− p)

+ρβ(1− ε)
μH − μL

σ
p(1− p)}Vxp

]
= 0

(8)

with the terminal condition

V (T,X(T ), p(T )) = U(X(T )).

Here, Vt, Vx, and Vp are respectively first–order derivatives with respect to time t, wealth x, and

belief p; Vxx and Vpp are respectively second–order derivatives with respect to wealth x and belief

p; and Vxp = ∂2V /∂x∂p.

Clearly, variation in posterior beliefs related to changes in future investment opportunities

can affect the insurer’s decision. In particular, Vp captures the marginal effect of mean–reversion

updating, Vpp captures the marginal effect of stochastic–belief updating on her value function, and

Vxp reflects the marginal effect of the covariance between her wealth and belief dynamics. The

first–order conditions give us the optimal strategies:

ε∗ =
[αση − ρβ(μ̄− r)

β2σ(1− ρ2)

] Vx

Vxx
+ 1, and π∗ =

[ραση − β(μ̄− r)

βσ2(1− ρ2)

] Vx

Vxx
− μH − μL

σ2
p(1− p)

Vxp

Vxx
. (9)

By following the standard arguments (see, e.g., Zariphopoulou (2001)), We conjecture the value

function as

V (t, x, p) = −1

γ
e−γc(t)(x+f(t,p))

with the terminal conditions

c(T ) = 1 and f(T, p(T )) = 0.

Theorem 2. Let ft ≡ ∂f/∂t, fp ≡ ∂f/∂p, and fpp ≡ ∂2f/∂p2,9 Then,

ft(t, p)− rf(t, p) + μ̃(t, p)fp(t, p) +
1

2
σ̃(t, p)fpp(t, p) + h(t, p) = 0, (10)

9 We assume that f is twice continuously differentiable with respect to p ∈ [0, 1] and one–time continuously
differentiable with respect to t ∈ [0, T ].
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where

μ̃(t, p) = {λL − (λL + λH)p} − μ̄− r

σ2
(μH − μL)p(1− p),

σ̃(t, p) =

(
μH − μL

σ

)2

p2(1− p)2,

h(t, p) = α(θ − η) +
e−r(T−t)

γ(1− ρ2)

[
(μ̄− r)2

2σ2
− αηρ(μ̄− r)

βσ
+

α2η2

2β2

]
.

The solution f exists, and the two boundary conditions hold:

ft(t, 0)− rf(t, 0) + λLfp(t, 0) + h(t, 0) = 0,

ft(t, 1)− rf(t, 1)− λHfp(t, 1) + h(t, 1) = 0.10

Sketch of the Proof. The proof of the existence of the solution f coincides with that of the solu-

tion V (t, x, p) to the HJB equation.11 We can show that derivatives such as fp(t, p), fpp(t, p), and

ft(t, p) are bounded and sufficiently differentiable (See Proposition 2 of Honda (2003) in particular).

In detail, we provide the derivation of Equation (10) in Appendix B. �

Theorem 2 shows that the level of f(t, p) represents the insurer’s belief adjustment of the

reinsurance and investment strategies concerning variation in posterior beliefs. This argument

follows from the fact that the belief adjustment affects the conjectured value function V only

through f(t, p).12 In short, we call f(t, p) certainty equivalent wealth (CEW) that captures the

wealth level of variation in posterior beliefs.

4.3. The Properties of the Certainty Equivalent Wealth f

The insurer in the PI model can update her belief on the current market condition (or on

the information about current regime) by reflecting the market information. Thus, we can obtain

the effect of information quality on the insurer’s optimal reinsurance and investment behaviors by

comparing fis of the CI model with f of the PI model. To this end, we first examine the properties

of the CEW f .

Define the conditional market price of risk, ϑ(t), under the PI model as

ϑ(t) ≡ μ̄(t)− r

σ
=

μL + (μH − μL)p(t)− r

σ
.

11 The PDE has a degenerate form near the boundaries at p = 0 or 1. Thus, the potential degenerate PDE enables
us to require whether f is sufficiently smooth enough to be differentiable.

12 We can easily get f by exploiting a numerical method.
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Note that ϑ(t) is within the interval of [(μL − r)/σ, (μH − r)/σ].13 Thus, there exists an equivalent

Martingale measure P̃ with respect to the original measure P given by dP̃/dP = Z(T )14 for

Z(t) = exp

{
−
∫ t

0
ϑ(s)dW̃R(s)− 1

2

∫ t

0
ϑ2(s)ds

}
, with W̃R(t) = ŴR(t) +

∫ t

0
ϑ(s)ds. (11)

Proposition 1. The CEW f(t, p) has the Feynman–Kac representation:15

f(t, p) = Ẽt,p

[∫ T

t
e−r(s−t)h(s, p(s))ds

]
=

α(θ − η)

r

[
1− e−r(T−t)

]
+

e−r(T−t)

γ(1− ρ2)
Ẽt,p

[∫ T

t

1

2
ϑ(s)2 − ρ · αη

β
ϑ(s) +

α2η2

2β2
ds

]
,

where Ẽt,p[·] is an expectation conditioned on the time-t condition p(t) = p under P̃.

Proof: The sketch of the proof is in Appendix C. �

Proposition 1 implies the CEW f can be decomposed into two components:

• The CEW by reinsurance costs, fC(t):

fC(t) ≡ α(θ − η)

r

[
1− e−r(T−t)

]
,

which depends on both time to maturity (T − t) and the difference between the safety loadings,

θ − η ≤ 0. Note that fC ≤ 0, implying the insurer perceives it as her capital losses.

• The CEW by demands on precautionary saving, fS(t, p):

fS(t, p) ≡ e−r(T−t)

γ(1− ρ2)
Ẽt,p

[∫ T

t

1

2
ϑ(s)2 − ρ · αη

β
ϑ(s) +

α2η2

2β2
ds

]
.

Since (αη/β)2(ρ2 − 1) ≤ 0, the second component fS driven by demands on precautionary saving

against both market risk and insurance claims risk has a non-negative value. Obviously, it has a

small value for high risk aversion γ.

13 Obviously, the bounded market price of risk satisfies Novikov’s condition (the Dominated Convergence Theorem).
Moreover, the bounded condition makes the wealth dynamics in the PI model to satisfy the Lipschitz and growth
conditions, which must be met to justify use of the standard verification theorem (Dybvig et al., 1999).

14 See Proposition 5.B of Duffie (2001). Here, Z(t) is a positive ˜P–Martingale due to Z(0) = 1.
15 See Theorem 7.6 of Karatzas and Shreve (1991).
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Subsequently, the positivity of the CEW f is dependent on the dominance of the CEW over demands

on precautionary saving against the CEW by reinsurance costs, i.e., fS > fC .

In addition, the CEW f goes to infinity as the stock prices and insurance claims are perfectly

(positively or negatively) correlated, i.e., lim|ρ|→1 f(t, p) = ∞. The correlation can be regarded as

a measure of how the claims risk is easily shared by the financial market. Thus, the insurer with

insurance claims which is highly correlated with the market movement has high motive to exploit

the risk–sharing effect.

Proposition 2. The first–order marginal CEW fp(t, p) > 0 if, for all t ∈ [0, T ], ϑ(t) > ραη/β
holds. Moreover, the second–order marginal CEW fpp(t, p) can have both positive and negative
values.

Proof: Applying the Malliavin calculus (Honda, 2003), The boundedness and differentiablity of

f(t, p) (see the Sketch of the Proof in Theorem 2) yield

fp(t, p) = Ẽt,p
[ ∫ T

t
e−r(s−t)∂h(s, p(s))

∂p(s)

∂p(s)

∂p
ds
]

=
e−r(T−t)

γ(1− ρ2)

μH − μL

σ
Ẽt,p

[∫ T

t

{
ϑ(s)− ρ · αη

β

}
I(s)ds

]
> 0,

where I(s) ≡ ∂p(s)/∂p with I(0) = 1. We present a stochastic differential equation form of I(t)

in Appendix D. Moreover, f can be either convex or concave with respect to p, depending on the

value of fpp. Applying the Malliavin calculus again, we get

fpp(t, p) =
e−r(T−t)

γ(1− ρ2)

(
μH − μL

σ

)2

Ẽt,p

[∫ T

t
I(s)2ds

]
+

e−r(T−t)

γ(1− ρ2)

μH − μL

σ
Ẽt,p

[∫ T

t

{
ϑ(s)− ρ · αη

β

}
J(s)ds

]
,

where J(t) ≡ ∂I(t)/∂p with J(0) = 0. Since J(0) = 0, J(t) can be positive or negative. �

The first statement of Proposition 2 implies that a sufficiently high expected risky return in

Low regime, μL, guarantees the increasing property of the CEW f with the initial belief p.16 The

second statement of Proposition 2 implies that the CEW f can be a convex or concave function

16 Strictly speaking, μL > r + ρ · αη
β
σ.
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with respect to the initial belief p according to the parameters condition.

5. Implications

5.1. Parameters

We use parameters in Jang and Kim (2015), who solve the ruin minimization problem for an

insurer under the two-state observable Markov chain. Jang and Kim (2015) estimated market

parameters and insurance claim parameters by utilizing KOSPI data and Korean property and

casualty insurance market data. In fact, they estimated the parameters in the two different models,

and we choose the parameters of Model 1 which restricts only the drift of insurance claims process

as a constant value across the two regimes. We set the other parameters by utilizing the relationship

of

Parameterave =
λL

λL + λH
ParameterH +

λH

λL + λH
ParameterL.

Note that λL
λL+λH

is the expected duration of staying in regime H, and λH
λL+λH

is that in regime L.

Specifically, the benchmark parameters are μH = 0.1188, μL = −0.2592, λH = 0.275, λL =

1.6304, r = 0.0140, σ = 0.2600, α = 1.7136 β = 0.1239, ρ = −0.0222, θ = 0.10, η = 0.12, and

T = 5.17 We set the baseline coefficient of absolute risk aversion as γ = 20.

5.2. Optimal Reinsurance Strategy

In this section, we compare the optimal reinsurance rates ε∗ (the PI model) with ε∗i for i ∈ {H,L}
(the CI model). Specifically, we rewrite ε∗ and ε∗i in terms of two risk–adjusted premiums between

the two markets and then study the corresponding implications.

[Insert Figure 1 here.]

The mark–to–market reinsurance policy ε∗ (Figure 1) depends on prior belief p. This argument

can be clearly justified by the existence of the market price of risk ϑ(0) ≡ μL+(μH−μL)p−r
σ :

ε∗ = 1 +
e−rT

γβ(1− ρ2)

[
ρ · ϑ(0)− αη

β

]
.

17 The sign of ρ differs from that presented in Jang and Kim (2015). This difference results from the negative
relation of the claims process dC(t) to claims shock dWC(t) (See footnote 14 in Jang and Kim (2015)).
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In addition, ε∗ is a linearly decreasing function of prior belief (Figure 1) with slope

e−rT

γβ(1− ρ2)

μH − μL

σ
· ρ < 0

as a result of ρ < 0.

This negative slope suggests a counter–cyclical reinsurance mechanism. For example, the in-

surer’s pessimistic view p → 0 close to regime L induces her to further raise the reinsurance rates

to maximize her terminal wealth. Indeed, the counter–cyclical mechanism can help prevent con-

siderable losses to meet liability obligations, especially during the recent financial crisis (CGFS,

2011).18

In contrast, ε∗i for i ∈ {H,L} is independent of prior belief:

ε∗i = 1 +
e−rT

γβ(1− ρ2)

[
ρ · ϑi − αη

β

]
,

where ϑH represents the best investment opportunities, but ϑL represents the worst investment

opportunities. In short, ε∗i only provides the quantitative reinsurance ceiling and floor; ε∗L is the

upper limit of ε∗, and ε∗H is the lower limit such that ε∗ ∈ [ε∗H , ε∗L] because ρ < 0.

As a matter of fact, the use of the low correlation ρ = −0.0222 makes the slope of ε∗ almost

flat. It seems to be independent of prior belief (Figure 1). However, this small effect on the mark–

to–market policy ε∗ may be confined into Korean markets, in which policy differs from those of

other countries (OECD, 2015). In the United States, for example, the insurance sector is highly

correlated with the banking sector (CGFS, 2011). This high correlation can result in substantial

variation in the counter–cyclical reinsurance mechanism.

The relative importance of the (correlated) market price of risk ρ · ϑ(0) and the reinsurance

price of risk αη
β significantly affects the counter–cyclical reinsurance policy ε∗. For example, the

condition ρ · ϑ(0) = αη
β corresponds to ε∗ = 1 so that she wants to perfectly hedge the claims risk

with the resulting prior:

pε∗ ≡ σ

ρ(μH − μL)

[
αη

β
− ρ · ϑL

]
.

The insurer’ perfect–hedge desire to be ε∗ = 1 occurs when she compares the counter–cyclical worst

case ρ · ϑL with her target reinsurance opportunities αη
β . Consequently, we find ρ · ϑ(0) < αη

β for

18 CGFS is the abbreviation of “the Committee on the Global Financial System”.

15



all p ∈ [0, 1]; thus, we can exclude the possibility that ε∗ ≥ 1.

In summary, both ε∗ and ε∗i are myopic decisions. The myopic decisions result from her in-

formation confidence, not from variation in posterior beliefs. However, insurance companies that

are eager to monitor a financial market can adopt the mark–to–market reinsurance strategy that

moves on a counter–cyclical basis.

5.3. Optimal Portfolio Strategy

In this section, we compare the optimal portfolio strategy π∗ (the PI model) with π∗
i for i ∈

{H,L} (the CI model). Specifically, we restate π∗ and π∗
i in terms of the two risk–adjusted premiums

and then study the corresponding implications.

The mark–to–market investment strategy π∗ depends on prior belief p. We can further decom-

pose π∗ into a myopic demand π∗
1 and an intertemporal hedging demand π∗

2:

π∗ =
e−rT

γσ(1− ρ2)

[
ϑ(0)− ρ · αη

β

]
︸ ︷︷ ︸

π∗
1

+
μH − μL

σ2
p(1− p) · −fp(0, p)︸ ︷︷ ︸

π∗
2

.

The non–myopic decision π∗
2 is attributed to her marginal CEW fp that results from variation in

posterior beliefs.

In contrast, π∗
i for i ∈ {H,L} only provides the quantitative investment ceiling and floor:

π∗
i =

e−rT

γσ(1− ρ2)

[
ϑi − ρ · αη

β

]
.

That is, π∗
H can be the upper bound of π∗ at p = 1 and π∗

L is the lower bound at p = 0 without

the intertemporal hedging demand π∗
2 such that π∗ ∈ [π∗

L, π
∗
H ].

This simple difference in information quality is consistent with the conventional results that fu-

ture uncertainty in relation to estimation risk generates an intertemporal hedging demand (Camp-

bell et al., 2004; Chacko and Viceira, 2005). Our analysis also supports the argument of Ang

and Bekaert (2002), who show that when an economic agent is uncertain about macroeconomic

conditions, the regime effect weakens by the hedging demand.

[Insert Figure 2 here.]

Specifically, we attempt to analyze the mark–to–market investment policy π∗ and the CEW f

related to variation in posterior beliefs with two cases: one in which short sales are allowed (Figure

2), and one in which short sales are not allowed (Figure 3).
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First, the short–sale case originates from the condition μL < r (Section 5.1). The insurer

can increase her risk–free profit in regime L, so she has no incentive to invest in risky assets.

Consequently, the availability of the worst financial–market opportunities makes short sales optimal,

although it is not legally allowed for insurance companies in most countries (OECD, 2015). Thus,

we will conduct a study of whether limiting short sales affects both her mark–to–market asset

allocation π∗ and the CEW f .

Second, a simple restriction μL = r can yield no short–sale case. This restriction satisfies

μL > r + ρ · αη
β σ due to ρ < 0 and also coincides with

ϑ(t) > ρ · αη
β

for all t ∈ [0, T ] (Proposition 2). Likewise, the restriction also affects the mark–to–market rein-

surance policy ε∗. However, it only changes the slope variation (Section 5.2), not the general

pattern.

The myopic demand π∗
1 ≡ e−rT

γσ(1−ρ2)

[
ϑ(0)− ρ · αη

β

]
is a linearly increasing function of prior belief

p with slope:
e−rT

γσ(1− ρ2)

μH − μL

σ
> 0.

Thus, the myopic demand π∗
1 corresponds to a pro–cyclical investment mechanism: the insurer’s

optimistic view p → 1 close to regime H increases the amount invested.

The relative importance between the (correlated) reinsurance price of risk ρ · αηβ and the current

market price of risk ϑ(0) significantly affects the pro–cyclical mechanism. For example, the condi-

tion ϑ(0) = ρ · αη
β corresponds to π∗

1 = 0 so that she has no pro–cyclical demand. The resulting

break–even prior to hold ϑ(0) = ρ · αη
β delivers

pπ∗
1
≡ σ

μH − μL

[
ρ · αη

β
− ϑL

]
.

Her desire to eliminate the pro–cyclical demand arises from the comparison between the reinsurance

opportunities ρ · αη
β and the worst investment opportunity set ϑL. Moreover, the condition ϑ(0) <

ρ · αηβ results in π∗
1 < 0 implies that short sales occur when the current investment opportunities are

not preferable to the reinsurance opportunities for her risk management. Thus, good market signal

ϑ(0) relative to ρ · αηβ gives incentive to increase the pro–cyclical portfolio amount, i.e., ϑ(0) > ρ · αηβ .

[Insert Figure 3 here.]
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In the short–sale case (Panel A, Figure 2), π∗
1 is negative at p < 0.70 but positive at p > 0.70.

This conclusion indicates that pπ∗
1
= 0.70. In the no short–sale case (Panel A, Figure 3), however,

π∗
1 is always positive as a result of ϑ(0) > ρ · αη

β for all p ∈ [0, 1], so no break–even prior p∗π1
exists.

The hedging demand π∗
2 ≡ μH−μL

σ2 p(1 − p) · −fp is a non–linear function of prior belief. This

demand functions as a counter–cyclical investment mechanism to offset the potential overreaction

to the pro–cyclical mechanism:

π∗
2 =

e−rT

γσ(1− ρ2)

(
μH − μL

σ

)2

p(1− p) · Ẽ0,p

[∫ T

0

{
ρ · αη

β
− ϑ(s)

}
I(s)ds

]
,

where

fp(0, p) ≡ e−rT

γ(1− ρ2)

μH − μL

σ
· Ẽ0,p

[∫ T

0

{
ϑ(s)− ρ · αη

β

}
I(s)ds

]
.

In short, ρ · αη
β − ϑ(t) for all t ∈ [0, T ] in π∗

2 represents the counter–cyclical mechanism, whereas

ϑ(0)− ρ · αη
β in π∗

1 represents the pro–cyclical mechanism.

Now, we relate the counter–cyclical mechanism to the CEW f . In particular, we must study

(i) the first–order marginal CEW fp that determines either the increasing or decreasing property

for the CEW f , and (ii) her second–order marginal CEW fpp that determines whether f is convex

or concave.

As a consequence, we find that the CEW f , which reflects the belief adjustment of reinsurance

and investment strategies, must be convex with respect to prior belief. This convex property can

be justified by our numerical results that fpp is strictly positive for all p ∈ [0, 1], regardless of

short–sale allowance. Further, the CEW decomposition f(t, p) = fC(t) + fS(t, p) shows that the

CEW by demands on precautionary saving, fS , is also convex with the same property as f , because

the CEW by reinsurance costs, fC , is independent of prior belief (Proposition 1). Let us go into

further details.

In the short–sale case (Panel B, Figure 2), π∗
2 is positive at p < 0.61 but negative at p > 0.61.

Given π∗
2 ≡ μH−μL

σ2 p(1−p) ·−fp and μH−μL

σ2 p(1−p) ≥ 0, her marginal behavior fp must be negative

at p < 0.61 but positive at p > 0.61. The fact fp < 0 at p < 0.61 implies that f is decreasing with

respect to prior belief and vice versa.

The counter–cyclical break–even prior pπ∗
2
defined to be fp = 0 suggests that she feels change

in preference between the two risk–adjusted premiums at pπ∗
2
= 0.61. For example, the fact that

fp is positive at p > 0.61 implies that the current investment opportunities are more favorable

than the (correlated) reinsurance opportunities. This relative importance reflects the demands on
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precautionary saving, which functions as the counter–cyclical mechanism as a result of the negative

effect of fp = fS
p on π∗

2.

In the no short–sale case (Panel B, Figure 3), π∗
2 is consistently negative. This result implies

that the counter–cyclical demand always has a negative effect on the total portfolio demand π∗.

The central difference in the short–sale case (Figure 2) arises from the consistent predominance of

ϑ(t) over ρ · αη
β for all t ∈ [0, T ]. The fact ϑ(t) > ρ · αη

β for all t ∈ [0, T ] indicates that the marginal

CEW fp is always positive.

In addition, the hedging demand π∗
2 depends on her risk aversion γ and the correlation ρ that

also determine the precautionary saving’s component fS . First, an increase in γ decreases the

magnitude of π∗
2 (Panels B, Figure 2 and Figure 3). This negative relationship implies that higher

risk aversion decreases her wealth level due to the high demands on precautionary saving:

lim
γ→∞ fp(t, p) = lim

γ→∞
∂fS(t, p)

∂p
= 0.

Second, an increase in ρ increases the magnitude of π∗
2. This positive relationship means that as

the risk–sharing effect increases so that the demands on precautionary saving decrease, her wealth

also increases as

lim
|ρ|→1

fp(t, p) = lim
|ρ|→1

∂fS(t, p)

∂p
= ∞.

The total portfolio demand π∗ = π∗
1 + π∗

2 seems to deviate little from the pro–cyclical demand

π∗
1 (Panels C, Figure 2 and Figure 3). The small size of this deviation may result from the low

correlation ρ = −0.022 in Korean markets. We believe that other countries in which the risk–sharing

effect is higher than this will exhibit substantial counter–cyclical behavior (CGFS, 2011).

Actually, many insurance companies suffered substantial losses on their portfolios during the

recent financial crisis (OECD, 2015). These losses stimulated the development of the counter–

cyclical investment mechanism. Our counter–cyclical implications can help protect against serious

losses and can also improve the financial stability of these companies.

5.4. The Effect of Information Quality

Comparing the CI model with the PI model in terms of certainty equivalent wealth can lead us

to get economic implication concerning the effect of information quality on the insurer’s optimal

strategies.

Definition 1. The certainty equivalent wealth gain by information acquisition (I-CEWG), Δi(·),
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in each regime i ∈ {H,L} is defined as

Vi(t, x−Δi(p)) = V (t, x, p). (12)

We also define the regime–weighted average Δave(p) (Jang et al., 2007):

Δave(p) =
λL

λL + λH
Δ1(p) +

λH

λL + λH
Δ2(p).

We plot the three kinds of the I-CEWGs regarding information quality with γ = 20 and x = 0.5:

the short–sale case μL < r (Panel A, Figure 4), and no short–sale case with the restriction μL = r

(Panel B, Figure 4). The main findings are as follows.

[Insert Figure 4 here.]

First, information quality certainly exists as a result of the positive Δi(p) for i ∈ {H,L, ave}
(Figure 4). To see this argument rigorously, we specify the exponents in the value functions in

Equation (12):

fi(0)−Δi(p) = f(0, p).

The strictly positive Δi(p) = fi(0) − f(0, p) implies that the constant fi(0) independent of prior

belief p is strictly larger than the variable f(0, p). Therefore, f leads to smaller variation in

wealth than does fis based on high information confidence. In this regard, the small effect on

wealth corresponds to conservative risk management strategy that arises from changes in future

investment opportunities.

Second, information quality is a concave function of prior belief. This conclusion can be easily

inferred from the characteristic of f determined by the relative importance of the risk–adjusted

premiums (Section 5.3): the CEW f is a convex function of prior belief, regardless of whether to

allow short sales. Thus, the positive Δi(p) = fi(0)− f(0, p) naturally corresponds to the concavity.

Third, information quality is affected by whether short sales are limited. In the short–sale case

(Panel A), ΔL(p) is larger than ΔH(p), implying fL(0) > fH(0). The reason why fL(0) is larger

than fH(0) is that short sales allow her even to avail bad investment opportunities to maximize

her wealth, which is associated with |π∗
L| > |π∗

H | (Panel C, Figure 2). In the no short–sale case

(Panel B), however, ΔH(p) is larger than ΔL(p), leading to fH(0) > fL(0). When short sales are

not allowed, she only avails good investment opportunities, which is related to |π∗
H | > |π∗

L| (Panel
C, Figure 3).
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6. Conclusion

This paper investigates the optimal mark–to–market reinsurance and asset investment strategies

for insurers with complete or partial information on expected return. The insurer with partial

information is assumed to have prior belief on the expected return and to update her posterior

beliefs by exploiting its price information. We show that the strategies of the insurer with partial

information can be highly dependent on prior belief, and that variation in posterior beliefs gives

rise to her counter–cyclical investment demand. By comparing the two insurers’ strategies, we show

that insurer’s utility gain by the information acquisition is a concave function with respect to prior

belief. This conclusion can be explained by the relative importance between reinsurance costs and

demand on precautionary saving.

Appendix A. The Proof of Theorem 1

Fist of all, we have the two terminal conditions c(T ) = 1 and fi(T ) = 0.

Plugging Equation (4) into Equation (3), we get the HJB equations for each regime i ∈ {H,L}:

Vi,t + {rx+ α(θ − η)}Vi,x − 1

1− ρ2

[
(μi − r)2

2σ2
− αηρ(μi − r)

βσ
+

α2η2

2β2

]
V 2
i,x

Vi,xx

+ λi{Vj − Vi} = 0.

(A.1)

The first–order and second–order derivatives are

Vi,t = − 1
γ [−γct(x+ fi)− γcfi,t]e

−γc(x+fi),

Vi,x = ce−γc(t)(x+fi),

Vi,xx = −γc2e−γc(t)(x+fi),

where ct ≡ df∂c∂t and fi,t ≡ ∂fi
∂t

. Rearranging Equation (A.1) gives

[
ct + rc

]
x+ c

[
fi,t +

ct
c
fi +

λi

γc

{
1− e−γc(fj−fi)

}
+ α(θ − η) +

1

γc(1− ρ2)

{(μi − r)2

2σ2
− αηρ(μi − r)

βσ
+

α2η2

2β2

}]
= 0.

To obtain the solution independent of x, the terms in the two square brackets must be zero. Then

Equation (5) in Theorem 1 is straightforward.
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The reader can easily provide a verification theorem for V if he/she can just follow the arguments

in Jang et al. (2007).

Appendix B. The Proof of Theorem 2

Plugging Equation (9) into Equation (8) corresponds to the HJB equation:

Vt + (rx+ αθ − αη)Vx +
1

1− ρ2

[αηρ(μ̄− r)

βσ
− (μ̄− r)2

2σ2
− α2η2

2β2

] V 2
x

Vxx

− μ̄− r

σ2
(μH − μL)p(1− p)

VxVxp

Vxx
− (μH − μL)

2
μ

2σ2
p2(1− p)2

V 2
xp

Vxx

+{λL − (λH + λL)p}Vp +
(μH − μL)

2

2σ2
p2(1− p)2Vpp = 0.

(B.1)

Recall that the conjecture value function V (t, p, x) = −1

γ
e−γc(t)(x+f(t,p)) with the terminal condi-

tions c(T ) = 1 and f(T, p(T )) = 0. The first–order and second–order derivatives are

Vt = −γ[ct(x+ f) + cft]V, Vx = −γcV, Vxx = γ2c2V,

Vp = −γcfpV, Vpp = −γcfppV + γ2c2f2
pV, Vxp = γ2c2fpV.

Substituting the derivatives into Equation (B.1) yields

[
ct + rc

]
x+ c

[
ft +

ct
c
f + μ̃p(t, p)fp +

1

2
σ̃p(t, p)fpp + h

]
= 0,

where

μ̃p(t, p) = {λL − (λL + λH)p} − μ̄− r

σ2
(μH − μL)p(1− p),

σ̃p(t, p) =

(
μH − μL

σ

)2

p2(1− p)2,

h(t, p) = α(θ − η) +
e−r(T−t)

γ(1− ρ2)

[
(μ̄− r)2

2σ2
− αηρ(μ̄− r)

βσ
+

α2η2

2β2

]
.

The first square bracket with c(T ) = 1 leads to c(t) = er(T−t), and the second square bracket with

f(T, p(T )) = 0 delivers the following linear second–order PDE:

ft(t, p)− rf(t, p) + μ̃p(t, p)fp(t, p) +
1

2
σ̃p(t, p)fpp(t, p) + h(t, p) = 0.

Now, we can provide the verification theorem for the PI model. In fact, the standard arguments

can be applied (Dybvig et al., 1999), and it is almost a copy of Proposition 1 in Honda (2003).
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Appendix C. Proof of Proposition 1

By the Girsanov theorem in Equation (11), we can rewrite Equations (6) and (7) as

dR(t) = rdt+ σdW̃R(t),

dp(t) = μ̃p(t, p(t))dt+ σ̃p(t, p(t))dW̃R(t),
(C.1)

where the drift and diffusion terms of the belief process under P̃ are given by

μ̃p(t, p(t)) = λL − (λH + λL)p(t)−
(
μH − μL

σ

)
p(t)(1− p(t))ϑ(t),

σ̃p(t, p(t)) =

(
μH − μL

σ

)
p(t)(1− p(t)).

David (1997) shows that the original belief process under P satisfies the Lipschitz and growth

conditions; thus, there exists a unique solution. Indeed, the bounded market price of risk ϑ(t) also

suffices that the adjusted belief process under P̃ also has a unique solution.

Next, we briefly sketch the proof of Proposition 1. Define a process Q(s) as

Q(s) = e−r(s−t)f(s, p(s)) +

∫ s

t
e−r(u−t)h(u, p(u))du. (C.2)

Applying the Itô formula to Q(s) yields

dQ(s) = −re−r(s−t)f + e−r(s−t)

(
ft + μ̃pfp +

1

2
σ̃2
pfpp + h

)
ds+ e−r(s−t)σ̃pfpdW̃R(s)

= e−r(s−t)

(
−rf + ft + μ̃pfp +

1

2
σ̃2
pfpp + h

)
ds+ e−r(s−t)σ̃pfpdW̃R(s).

We easily find that the first parenthesis in the drift term is equal to the PDE in Equation (10) and

then rewrite the remaining term as

dQ(s) = e−r(s−t)σ̃pfpdW̃R(s).

The Martingale property is easily obtained by

Ẽt,p [Q(T )−Q(t)] = Ẽt,p

[∫ T

t
e−r(s−t)σ̃pfpdW̃R(s)

]
= 0,

provided that fp is bounded on the domain p(t) ∈ [0, 1]. Here, Proposition 2 of Honda (2003) shows
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that the marginal function fp is bounded by the Dominated convergence theorem.

It is straightforward to show from Equation (C.2):

Ẽt,p[Q(T )] = Ẽt,p
[
e−r(T−t)f(T, p(T ))

]
+ Ẽt,p

[∫ T

t
e−r(s−t)h(s, p(s))ds

]
,

Ẽt,p[Q(t)] = f(t, p),

with the terminal condition:

f(T, p(T )) = 0.

This completes the proof:

f(t, p) = Ẽt,p

[∫ T

t
e−r(s−t)h(s, p(s))ds

]
, t ∈ [0, T ].

Appendix D. Proof of Proposition 2

We start with the belief process under P̃ in Equation (C.1). First, we define a process I(t) as

I(t) =
∂

∂p
p(t).

Then, we can derive the SDE of I(t) by using the the Malliavin calculus:

dI(t) =
∂μ̃p(t, p(t))

∂p(t)

∂p(t)

∂p
dt+

∂σ̃p(t, p(t))

∂p(t)

∂p(t)

∂p
dW̃R(t),

=
∂μ̃p(t, p(t))

∂p(t)
I(t)dt+

∂σ̃p(t, p(t))

∂p(t)
I(t)dW̃R(t) with I(0) = 1,

where
∂μ̃p(t,p(t))

∂p(t) and
∂σ̃p(t,p(t))

∂p(t) are given by

∂μ̃p(t, p(t))

∂p(t)
= 3

(
μH − μL

σ

)2

p(t)2 + 2

{
(μL − r)(μH − μL)

σ2
−
(
μH − μL

σ

)2
}
p(t)

−
{
λL + λH +

(μL − r)(μH − μL)

σ2

}
,

∂σ̃p(t, p(t))

∂p(t)
= (1− 2p(t))

(
μH − μL

σ

)
.

Here,
∂μ̃p(t,p(t))

∂p(t) and
∂σ̃p(t,p(t))

∂p(t) also satisfy the Lipschitz and growth conditions over the bounded

interval p(t) ∈ [0, 1]. The fact I(0) = 1 demonstrates the strictly positive I(t).
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Second, we define a process J(t) as

J(t) =
∂

∂p
I(t).

The SDE of J(t) evolves as

dJ(t) =

(
∂μ̃p

∂p(t)

∂I(t)

∂p
+

∂2μ̃p

∂p(t)2

(
∂p(t)

∂p

)2
)
dt+

(
∂σ̃p
∂p(t)

∂I(t)

∂p
+

∂2σ̃p
∂p(t)2

(
∂p(t)

∂p

)2
)
dW̃R(t)

=

(
∂μ̃p

∂p(t)
J(t) +

∂2μ̃p

∂p(t)2
I(t)2

)
dt+

(
∂σ̃p
∂p(t)

J(t) +
∂2σ̃p
∂p(t)2

I(t)2
)
dW̃R(t) with J(0) = 0,

where ∂2μ̃(t,p(t))
∂p(t)2

and ∂2σ̃(t,p(t))
∂p(t)2

are given by

∂2μ̃(t, p(t))

∂p(t)2
= 6

(
μH − μL

σ

)2

p(t) + 2

{
(μL − r)(μH − μL)

σ2
−
(
μH − μL

σ

)2
}
,

∂2σ̃(t, p(t))

∂p(t)2
= − 2

(
μH − μL

σ

)
.

Likewise, all the parameters are bounded over the interval p(t) ∈ [0, 1]. The fact J(0) = 0 implies

that J(t) can be negative.
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Figure 1: Optimal Reinsurance Rates ε∗. The parameters are μH = 0.1188, μL = −0.2592, λH = 0.275, λL = 1.6304,
r = 0.0140, σ = 0.2600, α = 1.7136 β = 0.1239, ρ = −0.0222, θ = 0.10, η = 0.12, and T = 5.
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(b) Hedging Demand
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(c) Optimal Portfolio

Figure 2: Optimal Portfolio Strategies (short–sale case). The parameters are μH = 0.1188, μL = −0.2592, λH = 0.275,
λL = 1.6304, r = 0.0140, σ = 0.2600, α = 1.7136 β = 0.1239, ρ = −0.0222, θ = 0.10, η = 0.12, and T = 5.
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(c) Optimal Portfolio

Figure 3: Optimal Portfolio Strategies (no short–sale case). The parameters are μH = 0.1188, μL = 0.0140, λH =
0.275, λL = 1.6304, r = 0.0140, σ = 0.2600, α = 1.7136 β = 0.1239, ρ = −0.0222, θ = 0.10, η = 0.12, and T = 5.
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Figure 4: Certainty Equivalent Wealth (CEW) with γ = 20. The parameters are μH = 0.1188, μL = 0.0140,
λH = 0.275, λL = 1.6304, r = 0.0140, σ = 0.2600, α = 1.7136 β = 0.1239, ρ = −0.0222, θ = 0.10, η = 0.12, T = 5,
and x = 0.5.
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