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(Introduction) 
 

  In a long history of financial economics, there have been considerable 

debates on anomalies (anomalous patterns in the cross-section of expected 

returns) – whether the anomalies are supporting or opposing evidences for the 

efficient market hypothesis. These debates result in an enduring tension 

between two philosophies – the efficient market hypothesis versus behavioral 

theory. Leaving these philosophical debates aside, every time a new anomaly 

is discovered, a new set of empirical factors is devised to explain the 

anomalies. For example, Fama and French (1993) and Carhart (1997)’s multi-

factor models originate from some of the most empirically powerful 

anomalies. 

  I have presented the expected anomaly model (a new model) providing 

different perspectives on the cross-section of expected anomalies as well as on 

the economy. I have proved that the capital asset pricing model (CAPM) holds 

for the anomalies so that an investor who attempts to exploit the discovered 

anomaly would fail to earn an extra profit exceeding the risk premia from the 

systematic risks. Next, I have suggested more general tests of market 

efficiency introducing the systematic risk measured on the anomaly, which is 

a prominent concept of the expected anomaly model. 

  The expected anomaly model is closely linked to the well-known cross-

sectional model and time-series model. The expected anomaly model is a 

special case of the cross-sectional model (an expected anomaly is the sum of a 

risk-neutral payoff and risk premia of the anomaly, while an asset’s expected 

return is the sum of the risk-neutral payoff and risk premia of the asset). 

Furthermore, the time-series model is a special case of the expected anomaly 

model (an alpha in the time-series model behaves like a time-invariant 
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anomaly in the expected anomaly model). Thus, the expected anomaly model 

is in the middle of the two models. 

  Ferson et al. (1999) worry that the use of spread portfolios may lead to 

some spurious test results of whether the cross-section of expected returns is 

explained by the systematic risks. I have summarized their concern with a 

notion of beta-alignment. In more detail, betas in the cores-sectional model 

may be aligned to asset-characteristics via two sources – herding behavior or 

construction of the spread portfolio. No one knows the sources from which 

the beta-alignment is derived. If the true cause of beta-alignment is the 

construction, the cross-sectional model doesn’t imply the risk-reward 

principle. The expected anomaly model, however, can avoid such problem 

related to the alignment so that researchers believe the test results of whether 

the cross-section of expected anomalies is explained by the systematic risks. 

  Moreover, the expected anomaly model enables researchers to test whether 

an empirical factor serves as the unknown true factor related to the anomaly. 

Through the model, one can find opposing evidences for the empirical factor 

if the factor doesn’t seem to describe the cross-section of the anomaly from 

which the factor is motivated. Yet, I have reserved such empirical applications 

of the expected anomaly model for subsequent series of researches as its 

inclusion will be overly burdensome for this current paper. 

 

 

I. Derivation of expected anomaly model 
 

  As argued by Ross (1978) and Harrison and Kreps (1979), lots of asset 

pricing models have each unique alternative form, called the pricing kernel 

model, which holds using a pricing kernel. The expected anomaly model 

featured in this paper starts with the following pricing kernel model: 

 

 𝑃𝑟𝑖𝑐𝑒[𝑅𝑡
𝑖] = 𝐸[𝑚𝑡 ⋅ 𝑅𝑡

𝑖], (1) 
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where 𝑅𝑡
𝑖  is a payoff of asset 𝑖, 𝑃𝑟𝑖𝑐𝑒[𝑅𝑡

𝑖] is a price of asset 𝑖, and 𝑚𝑡 is 

the pricing kernel that prices the payoff of all the assets. The price is equal to 

one if the payoff is a return and zero if the payoff is an excess return. The 

pricing kernel is sometimes called the stochastic discount factor or state price 

deflator. 1  One appropriate interpretation of the kernel is the change of 

macroeconomy, which affects investor’s marginal utility growth.2 Because Eq. 

(1) is the central alternative form of asset pricing models, the time-series 

model, cross-sectional model, and expected anomaly model can be started by 

this equation. 

  To further clarify, divide an asset payoff into two parts: 

 

 𝑅𝑡
𝑖 = ℛ𝑡

𝑖 +ℛ𝑡
𝑖∗. (2) 

 

Note that the second term on the right-hand side, ℛ𝑡
𝑖∗, is uncorrelated with the 

kernel, 𝑚𝑡. Now, plug Eq. (2) into Eq. (1) and derive an expected payoff 

below: 

 

 𝐸[𝑅𝑡
𝑖] =

𝑃𝑟𝑖𝑐𝑒[𝑅𝑡
𝑖]

𝐸[𝑚𝑡]
−
𝐶𝑜𝑣[𝑚𝑡 , ℛ𝑡

𝑖 ]

𝐸[𝑚𝑡]
  

  = 𝛾0
𝑖 −

𝐶𝑜𝑣[𝑚𝑡 , ℛ𝑡
𝑖 ]

𝐸[𝑚𝑡]
 , (3) 

 

where 𝛾0
𝑖 ≡ 𝑃𝑟𝑖𝑐𝑒[𝑅𝑡

𝑖] 𝐸[𝑚𝑡]⁄  is a risk-neutral payoff of asset 𝑖 and equals 

the risk-free rate, 𝑅𝑓, if the payoff is a return and zero if the payoff is an 

excess return.3 

                                         
1 

The pricing kernel is also closely related to the state price density, risk-neutral probability, 

equivalent martingale measure, and Green’s function. 
2 

The pricing kernel, 𝑚𝑡 = 𝜌 ⋅ 𝑢′[𝐶𝑡+1] 𝑢′[𝐶𝑡]⁄ , is induced by maximizing two-period utility, 

𝑈[𝐶𝑡, 𝐶𝑡+1] = 𝑢[𝐶𝑡] + 𝜌 ⋅ 𝑢[𝐶𝑡+1], where 𝐶𝑡 denotes an optimal consumption at time 𝑡, 𝑢[⋅] is a 

utility function, and 𝜌 is called the subjective discount.
 

3
 The terminology, “risk-neutral payoff”, comes from the fact that 𝛾0

𝑖  equals the product of the 

asset’s price and the risk-free rate, given 𝑅𝑓 = 𝐸[𝑚𝑡]
−1.
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  The starting point of Ross (1976)’s arbitrage pricing theory (APT) is a 

statistical characterization of a return by factors, 𝒇𝒕, which are also used for 

specifying the kernel: 

 

 𝑅𝑡
𝑖  = 𝛼𝑖 +𝜷𝒊′ ⋅ 𝒇𝒕 + 𝜉𝑡

𝑖, (4) 

 

 𝑚𝑡 = 𝑏 − 𝒇𝒕
′ ⋅ 𝒃. (5) 

 

This return characterization implies that ℛ𝑡
𝑖 ≡ 𝛼𝑖 +𝜷𝒊′ ⋅ 𝒇𝒕 in Eq. (2) is fully 

explained by the factors and ℛ𝑡
𝑖∗ ≡ 𝜉𝑡

𝑖  is orthogonal to the factors and 

kernel.4 Applying Eq. (3) to the APT characterization, Eq. (4), the expected 

return is expressed as: 

 

 𝐸[𝑅𝑡
𝑖] = 𝛾0

𝑖 +𝜷𝒊′ ⋅ 𝜸, (6) 

 

where each element of 𝜷𝒊 is the systematic risk (the amount of risk exposure 

of the asset to each factor) and 𝜸 ≡ 𝑉𝑎𝑟[𝒇𝒕] ⋅ 𝒃 𝐸[𝑚𝑡]⁄  denotes a vector of 

risk premia (prices of such risk exposures). Eq. (6) means that the expected 

return equals the sum of the risk-neutral payoff and risk premia of the asset. 

This equation derived from the pricing kernel model is called the cross-

sectional model. 

  Deriving the expected anomaly model is quite similar in the manner of the 

cross-sectional model. Characterize a return as: 

 

 𝑅𝑡
𝑖 = 𝒜𝑡

𝑖 +𝜽𝒊
′
⋅ 𝒇𝒕 + 𝜀𝑡

𝑖, (7) 

 

where 𝒜𝑡
𝑖  denotes an anomaly of asset 𝑖 and 𝜀𝑡

𝑖 is a residual uncorrelated 

with the anomaly and factors and has zero mean. In this return 

characterization, ℛ𝑡
𝑖 ≡ 𝒜𝑡

𝑖 +𝜽𝒊
′
⋅ 𝒇𝒕 is a function of not only the factors but 

also the anomaly of the return and ℛ𝑡
𝑖∗ ≡ 𝜀𝑡

𝑖 is orthogonal to the anomaly, 

                                         
4
 𝜉𝑡

𝑖 is uncorrelated with the factors and has zero mean. 



7 

factors, and kernel. Applying Eq. (3) to Eq. (7), the expected return is 

repacked as: 

 

 𝐸[𝑅𝑡
𝑖] = 𝛾0

𝑖 +𝜽𝒊
′
⋅ 𝜸 −

𝐶𝑜𝑣[𝑚𝑡 ,𝒜𝑡
𝑖 ]

𝐸[𝑚𝑡]
  

  = 𝛾0
𝑖 +𝜽𝒊

′
⋅ 𝜸 + 𝜹𝒊

′
⋅ 𝜸, (8) 

 

where each element of both 𝜽𝒊  and 𝜹𝒊 ≡ 𝑉𝑎𝑟[𝒇𝒕]
−1 ⋅ 𝐶𝑜𝑣[𝒇𝒕,𝒜𝑡

𝑖 ]  is 

systematic risk measured on the factors and anomaly, respectively. Note that 

the deltas are designed to have the same scale of systematic risks as the thetas 

for two reasons, even though these are measured on the different terms.5 First, 

the designed deltas are easily obtained by running a regression of the factors 

on the anomaly. Second, if the thetas and deltas have the same scales of 

systematic risks, a unit theta and delta also have the same prices of measured 

risks, thereby facilitating the comparison.6 

  Take expectations in both sides of Eq. (7) and plug it into Eq. (8). Then the 

expected anomaly model is derived as: 

 

 𝐸[𝒜𝑡
𝑖 ] = 𝛾0

𝑖 −𝜽𝒊
′
⋅
𝑃𝑟𝑖𝑐𝑒[𝒇𝒕]

𝐸[𝑚𝑡]
+ 𝜹𝒊

′
⋅ 𝜸  

  = 𝛾0
𝑖 −𝜽𝒊

′
⋅ 𝜸𝒐

𝒇
+ 𝜹𝒊

′
⋅ 𝜸, (9) 

 

where 𝜸𝒐
𝒇
≡ 𝑃𝑟𝑖𝑐𝑒[𝒇𝒕] 𝐸[𝑚𝑡]⁄  is a vector of risk-neutral payoffs of the 

factors and each element of it equals the risk-free rate if the factors are returns 

and zero if the factors are excess returns.7 The sum of the first two terms, 

𝛾0
𝑖 −𝜽𝒊

′
⋅ 𝜸𝒐

𝒇
, is the risk-neutral payoff of the anomaly, while the 𝛾0

𝑖  is the 

                                         
5
 𝜹𝒊[𝑧] ≡ 𝑧 ⋅ 𝑉𝑎𝑟[𝒇𝒕]

−1 ⋅ 𝐶𝑜𝑣[𝒇𝒕𝑡,𝒜𝑡
𝑖 ] can have different scales of systematic risks according to 

the value of 𝑧. 
6
 Total systematic risks contained in the asset equals the sum of the thetas and deltas: 𝜷𝒊 = 𝜽𝒊 +

𝜹𝒊. Obviously, Eq. (6) and Eq. (8) are equivalent. 
7
 𝑃𝑟𝑖𝑐𝑒[𝒇𝒕] = 𝐸[𝑚𝑡 ⋅ 𝒇𝒕] = 𝐸[𝑚𝑡] ⋅ (𝐸[𝒇𝒕] + 𝐶𝑜𝑣[𝑚𝑡 , 𝒇𝒕] 𝐸[𝑚𝑡]⁄ ) = 𝐸[𝑚𝑡] ⋅ (𝐸[𝒇𝒕] − 𝜸). 
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risk-neutral payoff of the asset.8 The third term, 𝜹𝒊
′
⋅ 𝜸, represents the risk 

premia of the anomaly. Thus, the expected anomaly model indicates that the 

expected anomaly should be equal to the sum of the risk-neutral payoff and 

risk premia of the anomaly. 

 

 

II. Expected anomaly model in the view of other models 
 

A. In the view of cross-sectional model 

 

  Consider a simple and practical case where all payoffs are in a return form 

and factors are in an excess return form9. Then the vector of risk-neutral 

payoffs of the factors, 𝜸𝒐
𝒇
, in Eq. (9) becomes a vector of zeros and the 

equation is stylized as: 

 

 𝐸[𝒜𝑡
𝑖 ] = 𝑅𝑓 +𝜹𝒊

′
⋅ 𝜸. (10) 

 

In this chapter, the link between Eq. (10) and the cross-sectional model 

(especially the CAPM) is discussed. 

  As pointed out by Hansen and Richard (1987), a return on any asset can be 

decomposed into the three orthogonal ingredients: 

 

 𝑅𝑡
𝑖 = 𝑟𝑡 +𝑤𝑖 ⋅ 𝑒𝑡 +𝑛𝑡

𝑖 , (11) 

 

where 𝑟𝑡 ≡ 𝑚𝑡 𝐸[𝑚𝑡
2]⁄  equals the return on the kernel which is mapped into 

the payoff space, 𝑒𝑡, equals the excess return produced by projecting a payoff 

vector of ones onto the space of excess returns, 𝑛𝑡
𝑖 , is a residual in the excess 

return form, and 𝑤𝑖 is a parameter which sets the mean of the residual to 

                                         
8
 The anomaly equals the return less the factor term and residual: 𝒜𝑡

𝑖 = 𝑅𝑡
𝑖 − 𝜽𝒊 ⋅ 𝒇𝒕 − 𝜀𝑡

𝑖. The 

risk-neutral payoff of 𝑅𝑡
𝑖 − 𝜽𝒊 ⋅ 𝒇𝒕 is equal to the risk-neutral payoff of 𝒜𝑡

𝑖  because the residual, 𝜀𝑡
𝑖, 

has zero price and risk-neutral payoff. 
9
 It is traditional to use the spread portfolio as a proxy for the factor. The spread portfolio is in the 

excess return form – has zero price and risk-neutral payoff. 
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zero. From the fact that the residual excess return, 𝑛𝑡
𝑖 , has zero mean and the 

three ingredients are orthogonal to each other, the first and second moments 

of the return are expressed as: 

 

 𝐸[𝑅𝑡
𝑖] = 𝐸[𝑟𝑡] + 𝑤𝑖 ⋅ 𝐸[𝑒𝑡], (12) 

 

 𝐸[𝑅𝑡
𝑖2] = 𝐸[𝑟𝑡

2] + 𝑤𝑖2 ⋅ 𝐸[𝑒𝑡
2] + 𝐸[𝑛𝑡

𝑖2], (13) 

 

respectively. An asset’ return with 𝑛𝑖 = 0 has its minimized variance among 

other returns with the same mean. Therefore, the mean-variance frontier 

consists of the returns with 𝑛𝑖 = 0 (minimum-variance returns). And the 

frontier is spanned by any two minimum-variance returns. 

  To address the similarity between the expected anomaly model and cross-

sectional model, postulate a return adjusted by the market factor: 

 

 𝑅𝑡
𝑖∗ = 𝑅𝑡

𝑖 − 𝜃𝑖 ⋅ (𝑅𝑡
𝑀 −𝑅𝑓), (14) 

 

where 𝑅𝑡
𝑖∗ denotes the risk-adjusted return, 𝑅𝑡

𝑀 is a return on the market 

portfolio, 𝑅𝑡
𝑀 −𝑅𝑓  is the market factor (an excess return on the market 

portfolio relative to the risk-free rate), and 𝜃𝑖 is a parameter which identifies 

the risk-adjusted return. The risk-adjusted return indicates a return on the 

achievable portfolio, long a unit asset and 𝜃𝑖 market portfolios and short 𝜃𝑖 

risk-free assets. 

  By construction, 𝑟𝑡 and 𝑛𝑡
𝑖  of the market factor in Eq. (11) vanish and 

consequently the market factor is exactly proportional to 𝑒𝑡 . Therefore, 

subtracting the market factor from an asset’s return doesn’t affect its 𝑛𝑡
𝑖 . Any 

risk-adjusted return, 𝑅𝑡
𝑖∗, in Eq. (14) has the same 𝑛𝑡

𝑖  as the corresponding 

return, 𝑅𝑡
𝑖 . This fact implies that the frontier of the entire set of risk-adjusted 

returns doesn’t change and the CAPM holds for the risk-adjusted returns: 

 

 𝐸[𝑅𝑡
𝑖∗] = 𝑅𝑓 +𝛽𝑖∗ ⋅ (𝐸[𝑅𝑡

𝑀] − 𝑅𝑓), (15) 
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where 𝛽𝑖∗ ≡ 𝐶𝑜𝑣[𝑅𝑡
𝑀 , 𝑅𝑡

𝑖∗] 𝑉𝑎𝑟[𝑅𝑡
𝑀]⁄  is the systematic risk contained in the 

risk-adjusted return.10 

  Recall that the residual, 𝜀𝑡
𝑖, in Eq. (7) is uncorrelated with the market factor 

and has zero mean. Then the CAPM also holds for the anomalies: 

 

 𝐸[𝒜𝑡
𝑖 ] = 𝑅𝑓 + 𝛿𝑖 ⋅ (𝐸[𝑅𝑡

𝑀] − 𝑅𝑓). (16) 

 

Even if the anomaly, 𝒜𝑡
𝑖 = 𝑅𝑡

𝑖∗ − 𝜀𝑡
𝑖, is not in the return form, it has the same 

average and systematic risk as those of the risk-adjusted return. 11 

Consequently, an investor holding the risk-adjusted asset would receive the 

reward, 𝐸[𝒜𝑡
𝑖 ], for bearing its systematic risk, 𝛿𝑖. 

  Testing the expected anomaly model can provide an answer to the efficient 

market hypothesis as well as the cross-sectional model does. For example, 

someone who discovers an anomaly may want to make a profit from the 

anomaly-chasing strategy, long the high-return anomaly stocks and short the 

low-return anomaly stocks adjusting some risks related to the factors. If the 

markets are efficient (and all the investors immediately know the anomaly), 

however, he would fail to yield an extra profit exceeding the risk premia from 

the systematic risks. In other words, under circumstances in which markets 

are efficient, the anomaly, 𝒜𝑡
𝑖 , in Eq. (7) becomes not anomalous in terms of 

the systematic risks. 

 

 

B. In the view of time-series model 

 

  Start with a short review of the time-series model. Take expectations in 

both sides of Eq. (4) and plug it into Eq. (6). Then the time series model is 

derived as: 

                                         
10

 The original CAPM is 𝐸[𝑅𝑡
𝑖] = 𝑅𝑓 + 𝛽𝑖 ⋅ (𝐸[𝑅𝑡

𝑀] − 𝑅𝑓), where 𝛽𝑖 ≡ 𝐶𝑜𝑣[𝑅𝑡
𝑀, 𝑅𝑡

𝑖] 𝑉𝑎𝑟[𝑅𝑡
𝑀]⁄  

is the systematic risk contained in the asset. 
11

 Recall that 𝜀𝑡
𝑖 is uncorrelated with the market factor and has zero mean. 
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 𝛼𝑖 = 𝛾0
𝑖 −𝜷𝒊′ ⋅

𝑃𝑟𝑖𝑐𝑒[𝒇𝒕]

𝐸[𝑚𝑡]
  

  = 𝛾0
𝑖 −𝜷𝒊′ ⋅ 𝜸𝒐

𝒇
, (17) 

 

where 𝛾0
𝑖  is the risk-neutral payoff of the asset and each element of 𝜸𝒐

𝒇
 is 

the risk-neutral payoffs of the factors. If factors are excess returns, 𝛼𝑖 equals 

the risk-free rate (if the payoff is a return) or zero (if the payoff is an excess 

return). Thus, the alphas are restricted to the same values across the assets. 

  The alpha seems like the risk-neutral payoff of the anomaly, 𝛾0
𝑖 −𝜽𝒊

′
⋅ 𝜸𝒐

𝒇
, 

in Eq. (9). To clarify the link between the expected anomaly model and time-

series model, specify an anomaly as: 

 

 𝒜𝑡
𝑖 = 𝑎0

𝑖 + 𝒂𝒊
′
⋅ 𝒙𝒕

𝒊 , (18) 

 

where 𝒙𝒕
𝒊  denotes a vector of asset-characteristics (e.g., the size, book-to-

market equity ratio, earnings-price ratio, price-dividend ratio of a firm or 

group, etc.) and each element of 𝒂𝒊 is the amount of risk exposure of the 

asset to each asset-characteristic. Eq. (18) is called the linear specification and 

it is introduced to make the problem easier – Eq. (7) turns out to be a multiple 

linear regression of the asset-characteristics and factors on the return.12 

  Then the systematic risks, 𝜹𝒊, contained in an anomaly are repacked as: 

 

 𝜹𝒊 =𝑊𝑖 ⋅ 𝒂𝒊, (19) 

 

where each element of 𝒂𝒊 represents risk exposure of the asset to each asset-

characteristic and 𝑊𝑖 ≡ 𝑉𝑎𝑟[𝒇𝒕]
−1 ⋅ 𝐶𝑜𝑣[𝒇𝒕, 𝒙𝒕

𝒊′] is the risk-scaling matrix 

which scales 𝒂𝒊 in order to measure 𝜹𝒊. The systematic risks, 𝜹𝒊, vanish 

under either of two conditions. First, the risk-scaling matrix, 𝑊𝑖, shrinks (but 

                                         
12

 One may posit a non-linear specification, such as 𝑙𝑛(𝒜𝑡
𝑖 − 1) = 𝑎0

𝑖 + 𝒂𝒊
′
⋅ 𝒙𝒕

𝒊. Then Eq. (7) 

turns out to be a semi-parametric regression. 
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it is a matter out of control). Second, the risk exposures, 𝒂𝒊 , become 

minuscule. If the specified anomaly less co-moves with the asset-

characteristics (i.e., 𝒂𝒊 ≈ 𝟎), the anomaly would rarely varies over time. It 

means that the deltas are close to zeros and the anomaly becomes the alpha.13 

In this context, the time-series model is a special case of the expected 

anomaly model. 

 

 

III. Tests of market efficiency 
 

A. Basic ideas 

 

  Consider a cross-sectional regression of the betas and expected asset-

characteristics on the expected returns: 

 

 𝐸[𝑅𝑡
𝑖] = 𝛾0 +𝜷𝒊′ ⋅ 𝜸 + 𝐸[𝒙𝒕

𝒊′] ⋅ 𝒄, (20) 

 

where 𝜷𝒊 is an estimated vector of the betas, each element of 𝒙𝒕
𝒊  denotes the 

asset-characteristic, and  𝛾0 equals the risk-free rate if all the payoffs are 

returns and zero if all the payoffs are excess returns. Credited to Fama and 

MacBeth (1973), Black and Scholes (1974), and Banz (1981), Eq. (20) 

provides descriptions of where the cross-section of expected returns comes 

from and whether the markets are efficient. 

  More generally, the following cross-sectional regression, 

 

 𝐸[𝑅𝑡
𝑖] = 𝛾0 +𝜽𝒊

′
⋅ 𝜸𝜽 + 𝜹𝒊

′
⋅ 𝜸𝜹 +𝐸[𝒙𝒕

𝒊′] ⋅ 𝒄, (21) 

 

is formed on more information about the discriminable systematic risks, 𝜽𝒊 

and 𝜹𝒊 .14 Note that the risk premia, 𝜸𝜽  and 𝜸𝜹 , in this regression are 

differently marked even though these would be the same if the markets are 
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 If the delta is zero, the thetas equals the betas because 𝜷𝒊 = 𝜽𝒊 + 𝜹𝒊. Then the expected 

anomaly model, Eq. (9), is equivalent to the time-series model, Eq. (17). 
14

 Recall that the thetas and deltas are measured on the factors and anomaly, respectively. 
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efficient. Traditional empirical work cares much about the statistical 

significance and directions of the slope estimates (i.e., the risk premia), while 

the magnitude of the estimates is often ignored.15 Likewise, researchers may 

be interested in the questions of which estimate drives out the others and 

whether the directions are desired in the economic sense. The ingredients 

contained in Eq. (21) are useful for describing the economy. 𝜽𝒊 represents 

co-movements in business cycles and market values, 𝜹𝒊 shows correlations 

between the business cycles and asset-specific information, and 𝐸[𝒙𝒕
𝒊] is the 

expected information about the specific asset. 

  One can test the efficient market hypothesis in a different manner, by 

running a cross-sectional regression of the deltas and expected asset-

characteristics on the expected anomalies: 

 

 𝐸[𝒜𝑡
𝑖 ] = 𝛾0 + 𝜹𝒊

′
⋅ 𝜸 + 𝐸[𝒙𝒕

𝒊′] ⋅ 𝒄. (22) 

 

A set of anomalies is discovered in the history of empirical studies, thereby 

having provoked the huge controversy over the efficient market hypothesis 

and sparked a lot of theoretical and empirical literature on new factors. Hence, 

the cross-section of expected anomalies is just as important as the cross-

section of expected return in the aspect of the empirical work. Eq. (22) 

focuses on the expected anomalies rather than the expected returns – 

researchers can arrive at some notable conclusions answering the question of 

how the expected anomalies are distributed across assets. 

 

 

B. Errors-in-variables biases 

 

  A practical version of the expected anomaly model organized on the linear 

specification, Eq. (18), is the following three-stage procedure: 

                                         
15

 There are, however, many researches to seek plausible explanations for the equity premium 

puzzle – why investors are too much afraid of holding risky assets. 
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The first stage: 𝑁 time-series regressions, 

 𝑅𝑡
𝑖 = 𝑎0

𝑖 + 𝒂𝒊
′
⋅ 𝒙𝒕

𝒊 + 𝜽𝒊
′
⋅ 𝒇𝒕 + 𝜀𝑡

𝑖. (23) 

 

The second stage: 𝑁 time-series regressions, 

 𝒜𝑡
𝑖 = 𝛼𝑖 + 𝜹𝒊

′
⋅ 𝒇𝒕 + 𝜂𝑡

𝑖 . (24) 

 

The third stage: a cross-sectional regression, 

 𝐸(𝑇)[𝒜𝑡
𝑖 ] = 𝐼𝑛𝑡.+𝜹𝒊

′
⋅ 𝜸 + 𝑣𝑖, (25) 

 

where 𝐸(𝑇)[⋅]  is the sample mean operator, 𝐼𝑛𝑡.  captures possible 

misspecifications in the expected anomaly model, and 𝑣𝑖 denotes the pricing 

error.16 In accordance with the linear specification, the anomaly, 𝒜𝑡
𝑖 , is 

constructed from 𝑎0
𝑖  and 𝒂𝒊 estimated in the first stage. Note that the alpha 

in Eq. (24) is equivalent to the alpha in the time-series model. 

  A simple and intuitive way to implement this procedure is to run each 

regression in order of the stages (referring to this method as the stage-by-stage 

approach). However, the stage-by-stage approach causes the errors-in-

variables (EIV) biases because the anomalies and deltas are measured with 

error. The EIV biases (misleading standard errors of the estimates) might be a 

crucial issue of empirical implementations of the expected anomaly model – 

as compared with the cross-sectional model. 

  There have been several suggestions on how to fix the EIV biases (see 

Black et al., 1972; Litzenberger and Ramaswamy, 1979; MacKinlay and 

Richardson, 1991; Shanken, 1992; Jagannathan and Wang, 1998). Among 

other things, the generalized method of moments (GMM) approach is strongly 

                                         
16

 In the perspective of the generalized method of moments developed by Hansen (1982), the 

pricing error equals the difference between the sample and popular means of the anomaly. 



15 

advocated for its simplicity and universality. 17  In addition, the GMM 

approach enables additional tests on the moment conditions (e.g., the 𝐽-test). 

 

 

IV. Alignment issues 
 

A. Beta-alignment 

 

  Many empirical studies use the spread portfolio, long the high-return 

characteristic stocks and short the low-return characteristic stocks, as if it 

represents the true factor in their models. Ferson et al. (1999) have cautioned 

against using the spread portfolio in the cross-sectional model because the 

spread portfolio can be just the other form of anomalous relation to returns. 

Their concern is summarized with a notion of beta-alignment discussed in this 

chapter. The terminology, “beta-alignment”, stands for the pattern that the 

betas in the cross-sectional model are aligned to some asset-characteristics 

(e.g., 𝐵 𝑀⁄ s). 

  Since stattman (1980) and Rosenberg et al. (1985)’s researches, many 

supporting evidences for the 𝐵 𝑀⁄  effect (expected returns are aligned to 

𝐵 𝑀⁄ s) have accumulated. Given the data pretested for the 𝐵 𝑀⁄  effect, 

empirical success of the cross-sectional model is guaranteed if the betas are 

aligned to the 𝐵 𝑀⁄ s.18 

  Denote by 𝑓𝑡 ≡ 𝑅𝑡
𝐻 −𝑅𝑡

𝐿 the spread portfolio, where 𝑅𝑡
𝐻 is an averaged 

return on high-𝐵 𝑀⁄  stocks and 𝑅𝑡
𝐿  is an averaged return on low-𝐵 𝑀⁄  

stocks.19 Then Eq. (4) is modified for the spread portfolio: 
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 One may need bias-adjusted GMM estimates, which have the same value as the estimates 

measured through the stage-by-stage approach. MATLAB code needed for this GMM estimation is 

available upon request. 
18

 This is a simple syllogism. The 𝐵 𝑀⁄  effect (expected returns are aligned to 𝐵 𝑀⁄ s) and the 

beta-alignment (the betas are aligned to 𝐵 𝑀⁄ s) lead to guaranteed empirical success of the cross-

sectional model (expected returns are aligned to the betas). 
19

 This spread portfolio is nothing less than Fama and French (1993)’s 𝐻𝑀𝐿. 
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 𝑅𝑡
𝑖 = 𝛼𝑖 +𝛽𝑖 ⋅ 𝑓𝑡 + �̅�𝑡

𝑖, (26) 

 

where 𝛼𝑖  and 𝛽𝑖  are measured parameters and �̅�𝑡
𝑖  is a residual. By 

construction, measured betas of high-𝐵 𝑀⁄  stocks are approximately equal to 

one, and measured betas of low-𝐵 𝑀⁄  stocks are roughly equal to negative 

one. 

  In fact, the measured betas are strongly aligned to the 𝐵 𝑀⁄ s from about 

negative one to about positive one in the data. The puzzle is from where the 

beta-alignment is derived. There are probably two sources of the beta-

alignment. First, it may be due to herding behavior (stocks with similar 

𝐵 𝑀⁄ s have similar time-series of returns). Second, it may be due to the 

construction of the spread portfolio (the spread portfolio consists of weighted 

returns of many assets). 

  If the herding behavior is the true cause of the beta-alignment, the similar 

values of measured betas imply the similar amounts of systematic risks – this 

is a desired case in the economic sense. Yet, if the main cause of the beta-

alignment is the construction, the measured betas provide almost no 

information on the systematic risks, thereby provoking confusions about 

whether the cross-section of expected returns is indeed associated with the 

systematic risks. 

 

 

B. Delta-alignment 

 

  It is an advantage of the expected anomaly model to avoid the trap of the 

alignment issue mentioned above. To further formulate this advantage, plug 

Eq. (7) into the construction of the spread portfolio, 𝑓𝑡 ≡ 𝑅𝑡
𝐻 −𝑅𝑡

𝐿 , and 

repack the spread portfolio as: 

 

 𝑓𝑡 = (𝒜𝑡
𝐻 −𝒜𝑡

𝐿) + (𝜃𝐻 − 𝜃𝐿) ⋅ 𝑓𝑡 + (𝜀𝑡
𝐻 − 𝜀𝑡

𝐿)  
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  = 𝑔𝑡 +𝑔𝑡
∗, (27) 

 

where 𝑔𝑡 ≡ 𝒜𝑡
𝐻 −𝒜𝑡

𝐿 denotes a spread in true anomalies, 𝒜𝑡
𝑖 , and 𝑔𝑡

∗ is 

the remaining. Note that 𝑓𝑡 is the unobservable true factor, while 𝑓𝑡 is the 

spread portfolio. 

  Next, modify Eq. (7) for the spread portfolio: 

 

 𝑅𝑡
𝑖 = 𝒜𝑡

𝑖 + 𝜃𝑖 ⋅ 𝑓𝑡 + 𝜀�̅�
𝑖, (28) 

 

where 𝒜𝑡
𝑖  denotes a measured anomaly and 𝜃𝑖 and 𝜀�̅�

𝑖 are a measured theta 

and residual, respectively. The measured anomaly should be close to the true 

anomaly if both the spread portfolio and true factor have similar distributions. 

  Assume that the true factor is a good proxy for the true factor. Then the 

measured anomalies, which are close to the true anomalies, are highly 

correlated with 𝑔𝑡  in Eq. (27) because, by definition, the spread in true 

anomalies, 𝑔𝑡, contains the weighted true anomalies. For example, under the 

assumption, the correlation between 𝒜𝑡
𝐻  and 𝑔𝑡  is about one and the 

correlation between 𝒜𝑡
𝐿 and 𝑔𝑡 is about negative one. As a result, the deltas 

containing the correlations between 𝒜𝑡
𝑖  and 𝑔𝑡 tend to be aligned to the 

𝐵 𝑀⁄ s – this is called the delta-alignment related to the construction (in the 

similar manner of the beta-alignment). 

  Conversely, the delta-alignment related to the construction implies that the 

spread portfolio is a good proxy for the true factor. Thus, the delta-alignment 

from either source – the herding behavior versus construction of the spread 

portfolio – indicates that the systematic risks are aligned to the asset 

characteristics. Researchers need not distinguish the sources from which the 

delta-alignment is derived. They can accept test results of whether the cross-

section of expected anomalies is explained by the systematic risks, without 

worrying about the data-pretested biases. 
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V. Conclusions 
 

  Each asset pricing model seems to be part of the economy. The pricing 

kernel model discusses consumption states, the time-series model focuses on 

risk-neutral payoffs, the cross-sectional model addresses the whole risk 

premia from the business cycle, and the anomaly expected anomaly model 

investigates the subdivided risk premia contained in the risk-adjusted return. 

There’s a proverb saying “the blind man touches the elephant.” It means a 

blind man who has only touched parts of the elephant can never grasp the 

entire picture of the elephant. Likewise, researchers should base their 

conclusions on test results not just of few models but of various models. 

  If the economy is considered to be an elephant, the asset pricing models can 

be compared to parts of the elephant as described below. 

 

Elephant’s body (the pricing kernel model): All kinds of asset pricing 

models are summarized with the pricing kernel model, making the model 

seems like organs of the economy. 

 

Elephant’s head (the cross-sectional model): The cross-sectional model is 

most popular and has been developed from the 1950s (e.g., various 

versions of the CAPM). This model symbolizes the risk-reward principle. 

 

Elephant’s tail (the time-series model): The time-series model looks like an 

appetizer served before the cross-sectional model. However, the time-series 

model overly rejects empirical factors (see Lo and MacKinlay, 1990), 

while the cross-sectional model rarely rejects the factors (see Ferson et al., 

1999). 

 

Elephant’s legs (the expected anomaly model): The expected anomaly 

model is motivated by the empirical ground of the anomalies. This model is 

robust to the data-pretested biases such as the 𝐵 𝑀⁄  effect. 
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  The expected anomaly model provides different perspectives on not only 

the economy but also the cross-section of expected anomalies. There are a 

number of researches that can be empirically undertaken with this model 

because there remain many anomalies that are not yet clearly resolved. 

Researchers can test whether an anomaly is really anomalous in terms of the 

risk-reward principle or whether an empirical factor serves as the true factor 

related to the anomaly. Reserving further empirical applications of the 

expected anomaly model for subsequent papers, I hope this model will 

provoke the generation of other ideas to help explain asset pricing phenomena. 
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