
Dynamic Consumption and Portfolio Choice with

Permanent Learning∗

Bong-Gyu Jang∗∗, Hyun–Tak Lee∗∗

Abstract

This paper studies a continuous–time intertemporal consumption and portfolio choice prob-

lem when a long–horizon investor does not exactly observe the expected returns of the risky

asset. The representative investor who has recursive preferences uses prior belief to estimate

the current regime and continuously updates her posterior beliefs with regard to future vari-

ation in expected returns. We contribute to solutions to the explicit log-utility case, and

to the approximate unit-risk-aversion case. We show explicitly that her belief behavior de-

pends on the parameters of investment opportunities and investor preferences. In addition,

the magnitude of the elasticity of intertemporal substitution of consumption determines the

relative importance of the substitution and income effects of belief change on consumption.
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1. Introduction

This paper studies how information quality affects intertemporal optimal consumption

and portfolio choice. In financial economics, information quality related to parameter learn-

ing represents how updates to information affect asset pricing or investment decisions. Stan-

dard portfolio literature (Campbell et al., 2004; Chacko and Viceira, 2005) has commonly

assumed that investors have complete knowledge of probability distributions (complete in-

formation), so several dynamics that influence their wealth have fixed parameters. However,

in practice, these parameters are unknown (incomplete information), so investors must learn

them from observed data for use in making forward–looking decisions.

To express this idea precisely, we develop a model in which a long–horizon investor

with a recursive utility (Duffie and Epstein, 1992) cannot exactly observe the expected

returns of a risky asset; simply, the expected–return process is assumed to follow a two–state

and continuous hidden Markov chain. The representative investor learns the time–varying

expected returns from risky–asset prices by revising her beliefs when new information arrives.

Specifically, the representative investor has prior belief about the current regime of a

financial market, and uses this belief to infer the unknown expected returns. We show that

prior belief affects myopic portfolio demand; this short–term investment characteristic is the

same for both single–period (myopic) and multi–period investors. At the same time, she con-

tinuously updates posterior beliefs with regard to future variation in expected returns. We

show that revisions in posterior beliefs governed by a nonlinear mean–reverting stochastic

differential equation (SDE) have a permanent effect on time variation in investment op-

portunities.1 This permanent nature gives rise to nonlinear intertemporal hedging demand

against adverse shifts of future investment opportunities; this conclusion differs from the

linear hedging demand of the standard literature.

Given the rational expectations model, we explore how revisions in posterior beliefs affect

1 A nonlinear SDE means that the SDE does not have an affine diffusion term with respect to a state
variable.
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optimal consumption and portfolio policies. In particular, we contribute to solutions to a

log-utility case, and to a unit-risk-aversion case.

First, we obtain an explicit solution to the log–utility case: the elasticity of intertemporal

substitution (EIS) of consumption and the coefficient of relative risk aversion (RRA) are

both equal to one. The conventional wisdom is that a logarithmic investor does behave like

a myopic investor. Even though the logarithmic investor focuses only on the short–term

investment characteristic, we show that she also updates her posterior beliefs. Her belief

behavior depends on the parameters of investment opportunities and investor preferences.

Second, we derive an approximate solution to the unit–risk–aversion case by further

relaxing that EIS = 1. The interpretation is similar to the log–utility interpretation in terms

of the updating behavior. By contrast, we show that the size of the EIS determines the

relative importance of the substitution and income effects of belief change on consumption.

The relative importance has a crucial difference on how posterior–belief variation affects the

optimal consumption rule.

The rest of the paper is organized as follows. Section 2 states our investment opportunity

set and optimization problem. Section 3 studies the optimal policies in response to posterior–

belief variation with the two cases. Section 4 concludes.

2. The Intertemporal Consumption and Portfolio Selection

2.1. Investment Opportunity Set

Simply, the investor trades two investment assets. The first one with instantaneous return

r is riskless:

dB(t)

B(t)
= rdt.

The second one with time–varying expected return µ(t) is risky:

dS(t)

S(t)
= µ(t)dt+ σdZ(t),
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where the expected return µ(t) is governed by the two–state hidden Markov chain: high

regime H, and low regime L with µH > µL; σ > 0 is a constant standard deviation; and

Z(t) is a standard Brownian motion.

The investor does not exactly know the expected return µ(t) (nor the resulting Brownian

motion). To infer the unknown µ(t), she uses own prior belief p(t) ≡ Pr (µ(t) = µH) ∈ [0, 1]

at initial time t and then updates posterior beliefs with regard to further variation in expected

returns. Given information available at time t, her estimated expected return µ̄(t) is defined

as

µ̄(t) ≡ µH · p(t) + µL(1− p(t)) = µL + (µH − µL)p(t).

The use of a nonlinear filtering theory (Liptser and Shiryaev, 2001) delivers the filtered

asset process as

dS(t)

S(t)
= µ̄(t)dt+ σdẐ(t),

and the posterior–belief process as

dp(t) = {λL − (λH + λL)p(t)}dt+
µH − µL

σ
p(t)(1− p(t))dẐ(t)

≡ µp(p(t))dt+ σp(p(t))dẐ(t),

(1)

where λi for i, j ∈ {H,L} is a transition intensity such that regime i jumps to regime j for

j /∈ i, and the new filtered Brownian motion Ẑ(t) is defined as

Ẑ(t) =

∫ t

0

dS(u)− µ̄(u)S(u)du

σS(u)
.

Our investment opportunity set describes her wealth process W (t) evolving as

dW (t) =
[
{r + π(t)(µ̄(t)− r)}W (t)− C(t)

]
dt+ σπ(t)W (t)dẐ(t)

≡ µw(W (t), p(t), C(t), π(t))dt+ σw(W (t), π(t))dẐ(t),

(2)

where C(t) denotes consumption, and π(t) is the proportion of wealth invested in the risky
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asset.

Our investment opportunity set differs from the set used in Campbell et al. (2004). First,

our expected–return process dµ̄(t) = (µH−µL)dp(t) includes the concave diffusion term (µH−

µL)σp ≡ (µH−µL)2
σ

p(t)(1− p(t)) that depends on prior belief, whereas Campbell et al. (2004)

consider the constant diffusion case. Second, we study a complete–market case, in which

shocks to dµ̄(t) are perfectly correlated with shocks to dS(t)/S(t). By contrast, Campbell

et al. (2004) study an incomplete–market case, in which shocks to dµ(t) are not perfectly

correlated with shocks to dS(t)/S(t). Third, our investment opportunity set characterizes

momentum investors; they learn a trend in expected–return variation from risky asset’s

observations. To see this, consider the covariance between dS(t)/S(t) and dµ̄(t):

Cov(dS(t)/S(t), dµ̄(t)) = (µH − µL)2p(t)(1− p(t)) ≥ 0.

Except for perfect beliefs (p(t) = 0 or 1), the positive covariance demonstrates the momentum

property. This contrasts with Campbell et al. (2004), who consider that Cov(dS(t)/S(t), dµ(t)) <

0. In sum, our purpose is to study how this learning characteristic affects optimal consump-

tion and investment policies.

2.2. Investor Preferences and Optimization Problem

The investor wants to maximize her utility function by controlling consumption and

investment rules subject to the budget constraint (2). Specifically, her preferences over

consumption are represented by a continuous–time recursive utility (Duffie and Epstein,

1992):

J = Et

[∫ ∞
t

f(C(s), J(s))ds

]
, (3)
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where Et[·] denotes the expectation given information available at initial time t, and f(C(t), J(t))

is a normalized aggregator of current consumption and continuation utility:

f(C(t), J(t)) =
β

1− 1/ψ
(1− γ)J(t)

[{
C(t)

((1− γ)J(t))1/(1−γ)

}(1−1/ψ)

− 1

]
, (4)

where β is the rate of time preference. As ψ → 1, this normalized aggregator becomes

f(C(t), J(t)) = β(1− γ)J(t)

[
log (C(t))− 1

1− γ
log ((1− γ)J(t))

]
. (5)

The recursive–utility function has a merit in that it can separate the RRA γ from the EIS

ψ; here, the case of γ = 1/ψ corresponds to the standard power-utility function.

The optimization problems in (1)–(5) depend on the investor’s wealth and posterior belief.

The resulting Bellman equation is

0 = sup
{C(t),π(t)}

[
f(C(t), J(t)) + µwJW +

1

2
σ2
wJWW + µpJp +

1

2
σ2
pJpp + σpσwJWp

]
, (6)

where Jx denotes the partial derivative of the value function J with respect to subscript x.

The first–order conditions with respect to consumption and portfolio rules are

C(t) = J−ψW [(1− γ)J ](1−γψ)/(1−γ)βψ, and

π(t) = − JW
W (t)JWW

{
µ̄(t)− r
σ2

}
− JWp

W (t)JWW

p(t)(1− p(t))
(
µH − µL

σ2

)
.

(7)

To extract economic insights, we will guess some forms of the value function J in the next

section.

3. Optimal Policies

In this section, we study optimal consumption and portfolio rules when a rational investor

faces the investment opportunity set and some preferences discussed in Section 2. Specifically,
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we study the log–utility case (γ = 1/ψ = 1) in Section 3.1, and the unit–RRA case (γ = 1)

in Section 3.2.

3.1. A Solution with Unit EIS and Unit RRA

Following the standard literature, the value function J(W (t), p(t)) has the form

J(W (t), p(t)) = I(p(t))
W (t)1−γ

1− γ
≡ exp{(1− γ)g(p(t))}W (t)1−γ

1− γ
. (8)

The form of I(p(t)) follows from the aggregator f(C(t), J(t)) (5) that J is homogeneous of

degree 1− γ in the level of consumption. Here, we assume that the function g(p(t)) is twice

continuously differentiable with respect to prior belief p(t). Now, g(p(t)) is interpreted as

investor’s belief behavior that reflects future revisions in posterior beliefs.

Proposition 1. For an investor with the unit EIS (ψ = 1), the value function (8) corre-
sponds to the following optimal consumption and portfolio rules:

C(t)

W (t)
= β, and (9)

π(t) =

(
1

γ

){
µ̄(t)− r
σ2

}
+

(
1− 1

γ

)(
µH − µL

σ2

)
p(t)(1− p(t)){−gp(p(t))}, (10)

where gp(p(t)) is the first–order derivative of the belief behavior g(p(t)) with respect to prior
belief p(t).

Proof : The proof is obtained by substituting the partial derivatives of J into the optimal

policies (7).

Eq. (9) shows that optimal consumption–wealth ratio C(t)/W (t) is myopic. The myopic

consumption rule follows that C(t)/W (t) is equal to the constant time–preference rate β;

this finding is consistent with the standard literature. In short, when ψ = 1, the income and

substitution effects of belief change on consumption offset each other exactly.

Eq. (10) shows that optimal portfolio choice π(t) is not myopic. This portfolio choice

represents a weighted average of myopic portfolio demand with a weight 1/γ (the first term)

and Mertons’ intertemporal hedging demand with a weight 1 − 1/γ (the second term). In
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particular, because µ̄(t) ≡ µL+(µH−µL)p(t), the myopic demand is an increasing monotonic

function of prior belief p(t). By contrast, the hedging demand is surely nonlinear as a result

of the belief–diffusion term σp
σ
≡ µH−µL

σ2 p(t)(1−p(t)) being multiplied by the marginal–belief

behavior gp ≡ gp(p(t)).

The direct analysis of the hedging demand with respect to γ is a difficult task because we

still do not know the form of gp. To simply explain this difficulty, we substitute the optimal

policies in Proposition 1 into the Bellman equation (6):

0 = β log β−β+r+
ϑ(t)2

2γ
−βg+

1

2
σ2
pgpp+

[
µp −

(
1− 1

γ

)
σpϑ(t)

]
gp−

1

2

(
1− 1

γ

)
σ2
pg

2
p, (11)

where ϑ(t) ≡ (µ̄(t)− r)/σ is defined as the filtered Sharpe ratio of the financial market. The

second–order ordinary differential equation (ODE) (11) reduced from the Bellman equation

(6) is possibly degenerate due to σp at the perfect beliefs, and is also nonlinear due to the

squared marginal–belief behavior g2p. A general solution to the degenerate and nonlinear

ODE seems almost impossible. This task would require intensive numerical analysis, and is

beyond the scope of this paper, but we find easily that γ has a clear effect on intertemporal

hedging demand.

Eliminating the hedging demand yields three analytic cases: (i) when investors have the

log utility (γ = 1/ψ = 1), (ii) when investors have perfect beliefs (σp = 0), and (iii) when the

marginal–belief behavior becomes zero (gp = 0). All three cases indicate that multi–period

investors behave like myopic investors.

To overcome the analytic difficulty, we focus on the logarithmic case (i), because it can

provide a benchmark for conjectures regarding the belief behavior of risk–averse investors

who have γ > 1 and of risk–seeking investors who have γ < 1. The size of γ crucially affects

the magnitude of the marginal utility of consumption relative to the benchmark. Although

the logarithmic investor only has myopic portfolio demand, we argue that she should be also

concerned about future variation in expected returns governed by posterior beliefs. To see
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this, we substitute γ = 1 into the ODE (11), which results in the linear (but degenerate)

ODE:

0 = β log β − β + r +
ϑ(t)2

2
− βg +

1

2
σ2
pgpp + µpgp.

The existence of the ODE justifies our argument, provided that the belief behavior g is not

constant. Now, we will study logarithmic investor’s belief behavior g(p(t)).

Proposition 2. A logarithmic investor with γ = 1/ψ = 1 has the explicit belief behavior

g(p(t)) = Et

[∫ ∞
t

e−β(s−t)
{
β log β − β + r +

1

2
ϑ(s)2

}
ds

]
= log β − 1 +

r

β
+

1

2
Et

[∫ ∞
t

e−β(s−t)ϑ(s)2ds

]
.

Proof : Apply an infinite version of the Feynman–Kac formula (see Theorem 3.5.3 and

Remark 3.5.6 of Pham (2009)).

Proposition 2 shows that the belief behavior g ≡ g(p(t)) is a function of prior belief

p(t); a solution to SDEs follows a Markov process (Shreve, 2004).2 However, the guess

form I(p(t)) ≡ exp{(1 − γ)g(p(t))} in the value function (8) suggests that posterior–belief

variation does not affect a log value function. This finding is analogous to those of the

standard literature because logarithmic investors behave like myopic investors. Next, we

explore the marginal–belief behavior gp(p(t)) that is an important source of intertemporal

hedging demand (10).

Proposition 3. A logarithmic investor with γ = 1/ψ = 1 has the following marginal–belief
behavior

gp(p(t)) =

(
µH − µL

σ

)
Et

[∫ ∞
t

e−β(s−t)ϑ(s)I(s)ds

]
,

where I(s) ≡ ∂p(s)/∂p(t), and the SDE of I(s) follows

dI(s) = −(λH + λL)I(s)ds+ (1− 2p(s))
µH − µL

σ
I(s)dẐ(s).

2 The fact that the belief process (1) satisfies the Lipschitz and growth conditions, so it can justify a
unique solution to p(t), although we cannot obtain the explicit distribution of p(t).
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Proof : Apply Malliavin calculus to the belief behavior g(p(t)).3

Proposition 3 shows that the sign of gp ≡ gp(p(t)) depends solely on the filtered Sharpe

ratio ϑ(s) ≡ (µ̄(s)−r)/σ for time s ∈ [t,∞]. This result occurs because I(t) = 1; i.e., I(s) > 0

at any time s. However, we do not guarantee the sign of the second–order marginal–belief

behavior gpp that determines whether the belief behavior g is convex or concave:

gpp(p(t)) =

(
µH − µL

σ

)2

Et

[∫ ∞
t

e−β(s−t)I(s)2ds

]
+

(
µH − µL

σ

)
Et

[∫ ∞
t

e−β(s−t)ϑ(s)J(s)ds

]
,

where J(s) ≡ ∂I(s)/∂p(t), and the SDE of J(s) evolves as

dJ(s) = −(λH + λL)J(s)ds+

(
µH − µL

σ

){
(1− 2p(s))J(s)− 2I(s)2

}
dẐ(s).

The fact of J(t) = 0 shows that gpp ≡ gpp(p(t)) is not always positive. Thus, the curvature

depends on the parameters of the investment opportunity set.

Corollary 3.1. If µL ≥ r for all time s ∈ [t,∞], logarithmic investor’s belief behavior
g(p(t)) is an increasing function with respect to prior belief p(t).

Corollary 3.1 is intuitive because the condition of µL ≥ r excludes short–sale availability.4

In general, the worst–case Sharpe ratio ϑL ≡ (µL − r)/σ becomes positive so that all the

ratios ϑ(s) for any time s ∈ [t,∞] are consistently positive. As a result, the product of

ϑ(s) ≥ 0 and I(s) > 0 in Proposition 3 shows that gp ≥ 0; so showing Corollary 3.1 suffices.

3.2. An Approximate Solution with Unit RRA

Following the standard literature, the value function J(W (t), p(t)) has the form

J(W (t), p(t)) = I(p(t))
W (t)1−γ

1− γ
= exp

{
1− γ
1− ψ

· h(p(t))

}
W (t)1−γ

1− γ
. (12)

3 See Honda (2003) for more technical details.
4 Suppose ϑ(t) = 0. This inspection gives p∗(t) = (r − µL)/(µH − µL) ∈ [0, 1]. If µL < r, short sales are

optimal over some priors to avail the worst market condition.
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Here, we use the general aggregator f(C(t), J(t)) (4), not (5) that was used in Section 3.1.

Proposition 4. For an investor who does not have the unit EIS (ψ 6= 1), the value function
(12) corresponds to the following optimal consumption and portfolio rules:

C(t)

W (t)
= βψ exp{h(p(t))}, and (13)

π(t) =

(
1

γ

){
µ̄(t)− r
σ2

}
+

(
1− 1

γ

)(
µH − µL

σ2

)
p(t)(1− p(t))

{
−hp(p(t))

1− ψ

}
, (14)

where hp(p(t)) is the first–order derivative of the belief behavior h(p(t)) with respect to prior
belief p(t).

Proof : Simply substitute the partial derivatives of J into the optimal policies (7).

Eq. (13) shows that log optimal consumption–wealth ratio C(t)/W (t) is an affine function

of the belief behavior h ≡ h(p(t)) along with ψ and β. Because we do not know the explicit

belief–behavior form, we attempt to find approximate belief behavior later.

Eq. (14) shows that optimal portfolio choice consists of myopic portfolio demand (the

first term) and intertemporal hedging demand (the second term). This portfolio composition

is similar to that when ψ = 1 (Proposition 1), but the marginal–belief behavior hp ≡ hp(p(t))

is further scaled by 1/(1− ψ). When multi–period investors focus only on myopic portfolio

demand, three analytic cases arise: (i) when investors have the unit RRA (γ = 1), (ii) when

investors have perfect beliefs (σp = 0), and (iii) when the marginal–belief behavior becomes

zero (hp = 0).

To help interpret Proposition 4, especially for the optimal consumption rule, we substitute

the optimal policies in Proposition 4 into the Bellman equation (6):

0 = r(1− ψ) + βψ +
1− ψ

2γ
ϑ(t)2 − βψ exp{h}+

1

2
σ2
phpp +

[
µp −

(
1− 1

γ

)
σpϑ(t)

]
hp

− 1

2

(
1− 1

γ

)(
1

1− ψ

)
σ2
ph

2
p.

(15)

The second–order ODE (15) reduced from the Bellman equation (6) is possibly degenerate

and is also nonlinear. To help understand the ODE (15), we further linearize the optimal
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consumption–wealth ratio (13) around the log long–term mean of c− w ≡ E[log{C(t)/W (t)}]

by using a first–order Taylor expansion

C(t)

W (t)
≈ κ0 + κ1(ψ log β + h(p(t))), (16)

where κ1 = exp{c− w} and κ0 = κ1(1− log κ1).
5 If the ratio (16) does not deviate seriously

from the long–term mean, this approximate ratio should be similar to the real ratio (13).

The substitution of the approximate ratio (16) into the ODE (15) yields

0 = r(1− ψ) + ψ(β − κ1 log β)− κ0 +
1− ψ

2γ
ϑ(t)2 − κ1 · h+

1

2
σ2
phpp +

[
µp −

(
1− 1

γ

)
σpϑ(t)

]
hp

− 1

2

(
1− 1

γ

)(
1

1− ψ

)
σ2
ph

2
p.

(17)

An approximate solution to the resulting ODE (17) still seems difficult to solve. Accordingly,

we focus on the case where γ = 1. This benchmark case leads to the following approximate

(but degenerate) ODE:

0 = r(1− ψ) + ψ(β − κ1 log β)− κ0 +
1− ψ

2
ϑ(t)2 − κ1 · h+

1

2
σ2
phpp + µphp. (18)

The existence of the ODE (18) can demonstrate that even the benchmark investor with

γ = 1 continuously updates her posterior beliefs in response to risky asset’s behavior, unless

h is constant. Now, we will study benchmark belief behavior h(p(t)) .

Proposition 5. An investor with the unit RRA (γ = 1) has the explicit belief behavior

h(p(t)) = Et

[∫ ∞
t

e−κ1(s−t)
{
r(1− ψ) + ψ(β − κ1 log β)− κ0 − κ1h+

1− ψ
2

ϑ(s)2
}
ds

]
=

r

κ1
(1− ψ) + ψ

(
β

κ1
− log β

)
− κ0
κ1

+
1− ψ

2
Et

[∫ ∞
t

e−κ1(s−t)ϑ(s)2ds

]
.

Proof : Apply an infinite version of the Feynman–Kac formula (Pham, 2009).

5 See Campbell et al. (2004) and Chacko and Viceira (2005) for the log–linear expansion.
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Proposition 5 suggests that the belief behavior h ≡ h(p(t)) is a general version of the

logarithmic behavior g ≡ g(p(t)) by relaxing the constraint that ψ = 1. To clarify this rela-

tionship, consider the limit of the optimal consumption–wealth ratio, i.e., limψ→1C(t)/W (t).

As ψ → 1 the consumption–wealth ratio C(t)/W (t) approaches the time–preference rate β

(Section 3.1); the constant ratio leads to κ1 = β and κ0 = β(1− log β). Given that the two

value functions in (12) and (8) are related as h = (1−ψ)g, all parameterizations correspond

to the logarithmic case:

lim
ψ→1

h(p(t))

1− ψ
= g(p(t)).

The guess form I(p(t)) ≡ exp{ 1−γ
1−ψh(p(t))} also suggests that revisions in posterior beliefs

with γ = 1 do not affect the value function (12); this finding is analogous to the finding in

Section 3.1.

Importantly, the size of ψ is the important determinant of whether the belief behavior h

is increasing or decreasing. To see this, we differentiate the belief behavior h with respect

to prior belief:

hp(p(t)) = (1− ψ)

(
µH − µL

σ

)
Et

[∫ ∞
t

e−κ1(s−t)ϑ(s)I(s)ds

]
. (19)

Given Corollary 3.1, if ψ < 1, the belief behavior h is increasing in prior belief p(t) with the

Markov property; if ψ > 1, h is decreasing.

Now, we study the effect of ψ on the optimal consumption rule (13) for the benchmark

investor with γ = 1. Note that an increase in prior belief has two conflicting effects on

consumption. On one hand, the increased belief causes a positive substitution effect of belief

change on consumption; that is, she increases consumption today. She responds in this way

because the increased belief improves investment opportunities (see the Sharpe ratio ϑ(t)).

On the other hand, the increased belief also causes a negative income effect on consumption;

that is, she decreases her consumption level relative to total wealth. This decrease follows

that she would anticipate the subsequent (downward) mean reversion of the risky asset in
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the future; the mean reversion driven by revisions in posterior beliefs increases the marginal

utility of consumption. By contrast, the decreased belief induces the opposite consumption

reaction: i.e., a negative substitution effect, and a positive income effect.

The net effect with γ = 1 on consumption distinguishes investors with ψ < 1 from those

with ψ > 1. To understand how this distinction is made, see the approximate consumption–

wealth ratio (16). Because the case of ψ < 1 delivers an increasing belief function with

respect to prior belief (see (19)), investors with ψ < 1 increase consumption as prior belief

increases. This finding implies that the substitution effect dominates the income effect;

these investors focus more on the short–term investment characteristic than on the adverse

mean–reverting shifts of future investment opportunities. By contrast, investors with ψ > 1

decreases consumption against potential deterioration in investment opportunities. The

similar argument demonstrates that the income effect dominates the substitution effect;

these investors put more emphasis on potential loss against future variation in expected

returns than on the short–term improvement in investment opportunities.

4. Conclusion

The standard literature has presumed that investors have perfect knowledge of price

movements. However, in practice, investors are not confident about the true price behavior.

Potential misjudgment may induce erroneous consumption and portfolio decisions.

In this paper, we postulate that the financial market is governed by the two–state hidden

Markov chain and focus on two benchmark cases. We show that information quality has

a significant effect on investors’ belief behavior; it depends clearly on the parameters that

characterize investment opportunities and investor preferences.
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Supplementary Materials

We estimate annual real (inflation–adjusted) parameters of the investment opportunities

and smoothed probabilities p(t) over a sample period from 1947 to 2015, given Corollary

3.1.6 Then, we use the Judd’s (1998) projection method to obtain the numerical results in

Sections 3.1 and 3.2.7

Section 3.1: A Solution with Unit EIS
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Figure 1: Optimal Portfolio Policy with (γ, ψ). The annual estimated parameters are µH = 0.0757, µL = r,

λH = 0.3155, λL = 0.6667, r = 0.0067, σ = 0.1586, and β = 0.06.

6 We use the data from Robert J. Shiller’s web site, “ http://www.econ.yale.edu/ shiller/data.htm”.
7 Judd, K.L., 1998. Numerical methods in economics. The MIT Press.
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(a) Time–Series Portfolio (0.75, 1)
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(c) Time–Series Portfolio (5, 1)
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(d) Time–Series Portfolio (10, 1)
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Figure 2: Implied Time–Series Portfolio Proportion with (γ, ψ). The annual estimated parameters are

µH = 0.0757, µL = r, λH = 0.3155, λL = 0.6667, r = 0.0067, σ = 0.1586, and β = 0.06.
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Section 3.2: An Approximate Solution with EIS = 0.75 < 1
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Figure 3: Optimal Consumption and Portfolio Policies with (γ, ψ). The annual estimated parameters are

µH = 0.0757, µL = r, λH = 0.3155, λL = 0.6667, r = 0.0067, σ = 0.1586, and β = 0.06.
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Figure 4: Implied Time–Series Consumption—Wealth Ratio with (γ, ψ). The annual estimated parameters

are µH = 0.0757, µL = r, λH = 0.3155, λL = 0.6667, r = 0.0067, σ = 0.1586, and β = 0.06.
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(a) Time–Series Portfolio (0.75, 0.75)
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(c) Time–Series Portfolio (5, 0.75)
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Figure 5: Implied Time–Series Portfolio Proportion with (γ, ψ). The annual estimated parameters are

µH = 0.0757, µL = r, λH = 0.3155, λL = 0.6667, r = 0.0067, σ = 0.1586, and β = 0.06.
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Section 3.2: An Approximate Solution with EIS = 1/0.75 > 1
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Figure 6: Optimal Consumption and Portfolio Policies with (γ, ψ). The annual estimated parameters are

µH = 0.0757, µL = r, λH = 0.3155, λL = 0.6667, r = 0.0067, σ = 0.1586, and β = 0.06.
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Figure 7: Implied Time-Series Consumption–Wealth Ratio with (γ, ψ). The annual estimated parameters

are µH = 0.0757, µL = r, λH = 0.3155, λL = 0.6667, r = 0.0067, σ = 0.1586, and β = 0.06.
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(a) Time–Series Portfolio (0.75, 1/0.75)
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(b) Time–Series Portfolio (1, 1/0.75)
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(c) Time–Series Portfolio (5, 1/0.75)
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Figure 8: Implied Time–Series Portfolio Proportion with (γ, ψ). The annual estimated parameters are

µH = 0.0757, µL = r, λH = 0.3155, λL = 0.6667, r = 0.0067, σ = 0.1586, and β = 0.06.
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