
 

 

Ultimate consumption risk and investment-based stock 

returns 

Hankil Kang* 

Jangkoo Kang† 

Changjun Lee‡ 

 

Abstract 

We show that the ultimate consumption model proposed by Parker and Julliard (2005) well 

explains the cross-section of investment-based stock returns. By the generalized method of 

moment (GMM) estimation, we find that the ultimate consumption model with horizons from 3 

years to 4 years has superior performance to the contemporaneous consumption model. The 

linearized model’s performance is comparable to that of the Fama-French and Chen-Roll-Ross 

model. We argue that the better performance of the ultimate model is linked to the relationship 

between business-cycle frequency consumption shocks and investment-based returns. 

 

JEL classification: G12 

Keywords: investment-based portfolio; long-run risk; expected return 

 

                                                      
* College of Business, Korea Advanced Institute of Science and Technology (KAIST), Seoul, Korea. E-
mail: feelsal@business.kaist.ac.kr. 
† Graduate School of Finance & Accounting, College of Business, Korea Advanced Institute of Science 
and Technology (KAIST), Seoul, Korea. E-mail: jkkang@business.kaist.ac.kr. 
‡ Corresponding author: College of Business Administration, Hankuk University of Foreign Studies, 270 
Imun-dong, Dongdaemun-Gu, Seoul, Korea. Phone+82-2-2173-3268, Fax+82-959-4645,  
E-mail:leechangjun@hufs.ac.kr. 



 

 

Ultimate consumption risk and investment-based stock 

returns 

 

 

Abstract 

We show that the ultimate consumption model proposed by Parker and Julliard (2005) well 

explains the cross-section of investment-based stock returns. By the generalized method of 

moment (GMM) estimation, we find that the ultimate consumption model with horizons from 3 

years to 4 years has superior performance to the contemporaneous consumption model. The 

linearized model’s performance is comparable to that of the Fama-French and Chen-Roll-Ross 

model. We argue that the better performance of the ultimate model is linked to the relationship 

between business-cycle frequency consumption shocks and investment-based returns. 

 

 

JEL classification: G12 

Keywords: investment-based portfolio; long-run risk; expected return 

 



3 

 

1   Introduction 

The asset pricing literature has its foundation in the consumption-based asset pricing model, 

pioneered by Lucas (1978), Breeden (1979). Intuitively, the asset prices should be related to the 

expectation about the future consumption growth given their payoffs at the future date. However, the 

consumption-based model has suffered from its poor empirical performance. Hansen and Singleton 

(1983) and Mehra and Prescott (1985) document that the classical consumption-based model cannot 

explain the empirical feature of equity and risk-free returns with reasonable parameter values in the 

model. After these critiques, numerous efforts are made to improve the empirical performance of the 

consumption-based model. Examples include Jagannathan and Wang (1996), Campbell and Cochrane 

(1999), Lettau and Ludvigson (2001), Bansal and Yaron (2004), Yogo (2006), and Hansen, Heaton 

and Li (2008). Given the intuitiveness of the model, the consumption-based model is still considered 

as one of the important topics in asset pricing. 

After a significant theoretical improvement by Campbell and Cochrane (1999) and Bansal and 

Yaron (2004), many studies on the consumption-based asset pricing model incorporate the external 

habit or the long-run risk in the model. Calibration is generally used in proving the empirical 

performance of the model. Although calibration gives us good insights to see the model’s 

performance in a large simulated sample, it might not be appropriate to examine the in-sample 

performance of the model.  

It is well known that firms’ investment is closely related to their stock returns. As empirically 

shown in Cooper, Gulen and Schill (2008), low investment firms earn higher returns. The relationship 

is quite strong, and its economic interpretation is supported by q-theory. Recently, Fama and French 

(2015) and Hou, Xue and Zhang (2014) propose similar asset pricing models with the investment and 

profitability factors. With its rich economic implications, the investment-based returns are considered 

as a risk factor. The relationship between the investment factor and macroeconomics is studied by 

Wang (2013) and Min, Kang and Lee (2015). 
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We take a step to estimate the relationship between the consumption risk and the investment-based 

portfolio returns empirically, employing the advanced model in Parker and Julliard (2005), which is 

called the ultimate consumption model. In this paper, we first estimate the generalized method 

moment (GMM) from the Euler equation to evaluate the ultimate consumption model’s ability to 

price the investment-based returns. Second, we evaluate the ability of linearized ultimate consumption 

model to explain the actual spread of investment-based portfolios, and compare it to two well-known 

asset pricing models, which are the Fama-French three factor model and the Chen-Roll-Ross 

macroeconomic factor model. 

We summarize the main findings of this paper as follows. First, the GMM estimates show that the 

ultimate consumption model with horizon ܵ ൒ 11 performs better than the contemporaneous model. 

However, we do not observe the same pattern in Parker and Julliard (2005), which shows the hump-

shaped explanatory power with its peak at ܵ ൌ 11. Second, the linearized model captures 48% of the 

actual spread of the low-minus-high investment strategy. This performance is striking compared to the 

other pricing models tested in this paper in that it best replicates the actual returns with comparable 

explanatory power as a one-factor model. Third, the performance of the ultimate consumption model 

can be justified by the close business-cycle relationship between the ultimate consumption growth and 

the investment-based returns.  

The remainder of this paper is organized as follows. Section 2 reviews the related literature. Section 

3 describes the data and empirical methodology used in this paper. Section 4 reports our empirical 

evidence and following discussions. Section 5 concludes. 

 

2   Related Literature 

Parker and Julliard (2005) argue that the consumption risk from longer-horizon consumption 

growth explains the cross-section of 25 size and book-to-market portfolios. There are three potential 

logics behind the ultimate consumption growth as a better measure: slow adjustment, measurement 
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error, nonseparability of marginal utility. They construct the moment conditions by cumulating the 

classical Euler equation and use the GMM to estimate the model. As a result, the ultimate 

consumption model with horizon of 3 years best prices the returns with the cross-sectional ܴଶ of 

44%. Grammig, Schrimpf and Schuppli (2009) test the ultimate consumption model in the US, UK, 

and German markets. They find that the model’s performance gets weaker when they include industry 

portfolios in the test asset, although the risk aversion estimate is more reasonable in longer horizon. 

A growing body of the asset pricing literature focuses on the negative relation between firms’ 

investment and its stock returns (Cochrane (1991); Cooper, Gulen and Schill (2008); Li and Zhang 

(2010); Liu, Whited and Zhang (2009)). Cooper and Priestley (2011) show that the cross-section of 

investment-based returns are well explained by the loadings on the Chen, Roll and Ross (1986) 

macroeconomic factors. 

Our paper makes a linkage between the consumption-based asset pricing model and the investment-

based returns. Although we do not have to model the consumption side and the production side 

simultaneously as noted by Cochrane (2009), if the investment-based returns contain economic risk, 

they should be closely related to the consumption risk. Motivated by Min, Kang and Lee (2015) who 

show that the investment factor is closely related to macroeconomics and business cycle fluctuations, 

we directly investigate the relationship between the long horizon consumption growth and investment 

portfolio returns. 

 

3   Data and Empirical Methodology 

3.1 Data 

For test assets, we use quarterly returns on 10 investment-sorted portfolios and 25 size-investment 

sorted portfolios from Kenneth French’s website.1 Since we extend our ultimate consumption model 

                                                      
1http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html 
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to the horizon S ൌ 15 (four years), we discard the last 15 quarters from the available sample. As a 

result, the sample period is from 1963:Q3 to 2011:Q1. Fama and French (2015) measure investment 

of a firm as the percentage growth of total asset (compustat item AT). This measure is also used in 

Cooper and Priestley (2011) which they call as asset growth (AG), and Hou, Xue and Zhang (2014) 

use the same definition as the measure of investment. We use returns of 3-month Treasury bonds as 

the risk-free rate of the quarter.  

We use real per capita consumption data from the National Income and Product Accounts (NIPA). 

We make the standard “end-of-period” assumption that consumption during period ݐ takes place at 

the end of the period. Following Parker and Julliard (2005), we use nondurable consumption 

expenditure as our consumption measure. Our consumption data covers the sample from 1963:Q2 to 

2014:Q4.  

The competing asset pricing models in this paper are the Fama-French three factor model and the 

Chen-Roll-Ross model. Since the Fama and French (2015) and Hou, Xue and Zhang (2014) use the 

investment-based excess returns as one of the risk factors, we do not include those models here, 

because our purpose is to explain the investment-based returns themselves. We use the Fama-French 

factors from Kenneth French’s website. The market factor (MKT) is the value-weighted excess returns 

of NYSE, AMEX, and NASDAQ. The size factor (SMB) is the excess returns of the portfolios of 

small and big stocks, and the book-to-market factor (HML) is the excess returns of the portfolios of 

high book-to-market and low book-to-market stocks. Liu and Zhang (2008) argue that momentum 

profit can be explained by the Chen-Roll-Ross macroeconomic factors, and Cooper and Priestley 

(2011) show that the production-based anomalies are well explained by the loadings on the Chen-

Roll-Ross factors. We follow Liu and Zhang (2008) to construct the Chen-Roll-Ross macroeconomic 

factors. We define marginal production (MP) as the log growth of the index of industry production 

from the Federal Reserve Bank of St. Louis. Unexpected inflation (UI) is defined as ܷܫ௧ ൌ ௧ܫ െ

ݐ|௧ܫሾܧ െ 1ሿ, change of expected inflation (DEI) is ܫܧܦ௧ ൌ ሿݐ|௧ାଵܫሾܧ െ ݐ|௧ܫሾܧ െ 1ሿ. Inflation measure 

is the log difference of consumer price index from the Federal Reserve Bank of St. Louis. The 
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expected inflation is calculated as EሾI୲|ݐ െ 1ሿ ൌ ௙௧ݎ െ ݐ|௧ܱܪሾܴܧ െ 1ሿ , where ݎ௙௧  is one-month 

Treasury bill rate and ܴܱܪ௧ ൌ ௙௧ݎ െ  ௧ is the ex post real return on Treasury bills. Following Famaܫ

and Gibbons (1984), ܴܱܪ௧ is modeled as ARIMA(0,1,1) process as ܴܱܪ௧ െ ௧ିଵܱܪܴ ൌ ௧ݑ ൅  ௧ିଵݑߠ

and the ex ante real rate, ܧሾܴܱܪ௧|ݐ െ 1ሿ is calculated as ܧሾܴܱܪ௧|ݐ െ 1ሿ ൌ ൫ݎ௙௧ିଵ െ ௧ିଵ൯ܫ ൅ ௧ݑ ൅

 ௧ିଵ. Term spread (UTS) is the difference between the yields of a 10-year and a 1-year governmentݑߠ

bonds. Default spread (UPR) is the difference between the yields on Moody’s Baa and Aaa corporate 

bonds. 

 Table 1 describes the returns of our test assets. In Panel A, we report the mean quarterly returns of 

the 10 investment-sorted portfolios. The mean returns show the clear pattern that the expected returns 

decrease with investment. The pattern is stronger in the equally-weighted portfolios, and the 

difference between the lowest and the highest investment portfolios is significant. Panel B shows the 

mean returns of 25 size-investment double-sorted portfolios. We observe that the expected returns are 

quite similar in four portfolios except for the highest investment portfolios.  

  

3.2 Empirical Methodology 

3.2.1 The Ultimate Consumption Model 

We introduce the ultimate consumption model in Parker and Julliard (2005) to explain the cross-

section of stock returns. We start from the two-period consumption-based model, which will be 

documented in this paper as the “contemporaneous consumption-based model”. The model implies 

the Euler equation as follows: 

E୲ ቂߜ
௨ᇲሺ஼೟శభሻ

௨ᇲሺ஼೟ሻ
ܴ௧ାଵ
௘ ቃ ൌ 0	                             (1) 

where ܥ௧ is the consumption expenditure at time ݑ ,ݐሺ⋅ሻ denotes the utility function, ߜ is the time-

discount factor, and ܴ௧ାଵ
௘  is the excess return of any asset. The stochastic discount factor (SDF) in 

this model is defined as ݉௧ାଵ ൌ ߜ
௨ᇲሺ஼೟శభሻ

௨ᇲሺ஼೟ሻ
, and the expected excess return is 
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ሾܴ௧ାଵܧ
௘ ሿ ൌ െ

஼௢௩ሺோ೟శభ
೐ ,௠೟శభሻ

ாሺ௠೟శభሻ
. 

Parker and Julliard (2005) exploit the consumption Euler equation for the risk-free rate from time 

ݐ ൅ 1	 to ݐ ൅ 1 ൅ ܵ to yield the following relation: 

௧ାଵሻܥᇱሺݑ ൌ ௧ାଵൣܴ௧ାଵ,௧ାଵାௌܧߜ
௙  ௧ାଵାௌሻ൧                     (2)ܥᇱሺݑ

When we define ݉௧ାଵ
ௌ ൌ ܴ௧ାଵ,௧ାଵାௌ

௙  ,௧ሻ and substitute equation (2) into equation (1)ܥᇱሺݑ/௧ାଵାௌሻܥᇱሺݑ

we end up with the following relation of expected excess return and consumption growth to the far 

future. 

ሾܴ௧ାଵܧ
௘ ሿ ൌ െ

஼௢௩൫ோ೟శభ
೐ ,௠೟శభ

ೄ ൯

ா൫௠೟శభ
ೄ ൯

                            (3) 

Following Parker and Julliard (2005), we call െݒ݋ܥ൫ܴ௧ାଵ
௘ ,݉௧ାଵ

ௌ ൯ as the ultimate consumption risk, 

and we assume the power utility function ݑሺܥ௧ሻ ൌ
ଵ

ଵିఊ
௧ܥ
ିఊ. 

Using the first-order log linearization of Lettau and Ludvigson (2001), we examine the 

performance of linearized consumption CAPM. With this approximation, the linearized version of 

stochastic discount factor has the following form: 

݉௧ାଵ
ௌ ൌ ܴ௧ାଵ,௧ାଵାௌ

௙ െ ௌܴ௧ାଵ,௧ାଵାௌߛ
௙  ௧ାଵାௌ                    (4)ܿ߂

where ܿ߂௧ାଵାௌ ൌ ln ቀ
஼೟శభశೄ
஼೟

ቁ . If we further assume that ܴ௧ାଵ,௧ାଵାௌ
௙  is constant over time, the 

ultimate consumption model can be viewed as a one-factor model with the ultimate consumption 

growth as the unique factor. 

 

3.2.2 Estimation Methodology 

We use a slightly modified version of moment restrictions which is used in Parker and Julliard (2005) 

and Yogo (2006). Taking this approach has a number of benefits. First, it allows us to compare our 

results directly to those of Parker and Julliard (2005). Second, it shows the model’s performance in 

two dimensions: (1) whether it explains the overall level of equity premium and (2) whether it 
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explains the cross-section of the test assets. With the power utility function, the stochastic discount 

factor is ݉௧
ௌ ൌ ܴ௧,௧ାௌ

௙ ቀ஼೟శೄ
஼೟షభ

ቁ
ିఊ

. The moment condition for the GMM estimation is expressed as 

follows: 

ሾ݃ሺܴ௧ܧ
௘, ,௧ାଵାௌܥ ,௧ିଵܥ ,ௌߤ ,ௌߛ ௌሻሿߙ ൌ ൥

ܴ௧
௘ െ ௌ૚ேߙ ൅

൫௠೟
ೄିఓೄ൯ோ೟

೐

ఓೄ

݉௧
ௌ െ ௌߤ

൩           (5) 

where αୗ captures the average difference of the sample equity returns and the model-implied returns. 

The last moment allows us to compare the pricing models with different ܵs under a similar criterion. 

We estimate the above model with two types of GMM. First, the GMM with a prespecified 

weighting matrix uses a diagonal matrix which has ones in the diagonals except for the last element 

and a very large weight for the last moment. Under this method, the GMM prices the exact portfolios 

we use in the test, not the combinations of the portfolios. To examine the model’s performance, we 

use the distance measure in Jagannathan and Wang (1996) and Hansen and Jagannathan (1997), which 

is called the Hansen-Jagannathan distance. We follow the appendix of Parker and Julliard (2005) to 

evaluate this measure. Second, we also report the efficient GMM which we re-estimate the weighting 

matrix until convergence. In this case, we use Hansen (1982)’s J-test to evaluate the model’s 

performance. 

To test the linearized model’s performance, we use two approaches. First, we adopt the standard 

cross-sectional regression of Fama and MacBeth (1973). We examine whether the cross-sectional 

coefficient on the ultimate consumption beta is significant when we increase the horizon ܵ to 

measure the consumption growth. Second, we use the methodology used in Liu and Zhang (2008) and 

Cooper and Priestley (2011). More specifically, we construct the risk premium of the linear factor 

pricing models from a broad collection of test assets. After we build the risk premium of the factor 

models, we calculate the expected return of a portfolio ܲ as follows: 

ሾܴ௉ሿܧ ൌ  ி෢,                               (6)ߚ′ி෢ߣ

where ߚி෢ is the vector of factor loadings on the asset pricing factors from the time-series regression, 
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and ߣி෢ is the vector of risk premiums. By doing this, we estimate the model-implied spread of low 

and high investment portfolios. We examine how the actual spread can be explained by the factor 

models. 

4   Empirical Evidence 

4.1 Performance of the Ultimate Consumption Model 

Table 2 and Table 3 illustrate the GMM estimation results with ten equally and value weighted 

investment portfolios, respectively. Panel A shows the results when we use a prespecified weighting 

matrix, and Panel B presents the results when we use efficient GMM. We evaluate cross-sectional ܴଶ 

as follows: 

ܴଶ ൌ 1 െ
௏௔௥൫ா೅ൣோ೔

೐൧ିோഢ
೐෢൯

௏௔௥൫ா೅ൣோ೔
೐൧൯

                              (7) 

where ்ܧሾܴ௜
௘ሿ ൌ

ଵ

்
∑ ܴ௜,௧

௘்
௧ୀଵ 	 and ܴప

௘෢ ൌ ௌෞߙ െ
ா೅ቂቀ௠೟

ೄ෢ ିఓೄෞቁோ೔,೟
೐ ቃ

ఓೄෞ
. We report estimated values of ߙௌ and 

 ௌ with their GMM standard errors in brackets. In Panel A and B, we show the Hansen-Jagannathanߛ

distance and the Hansen J-statistic with their p-values in square brackets. 

 As documented in the previous literature, the performance of contemporaneous consumption CAPM 

with ܵ ൌ 0 is disappointing for the following two reasons. First, its ܴଶ is near zero or even negative 

in the efficient GMM, which means that contemporaneous consumption CAPM does not help explain 

the cross-section of excess returns of investment-based portfolios. Second, the term ߙ଴ has the value 

near 2% and statistically significant. This is close to the cross-sectional average of excess returns, 

which implies the model’s poor performance to capture the average level of equity premium. 

When we increase the horizon ܵ to measure the consumption growth, the increase in pricing 

performance is dramatic. First, in Table 2, the cross-sectional ܴଶ increases to 0.671 when ܵ ൌ 15. In 

Table 3, we observe the highest ܴଶ when S ൌ 9 with the highest value of 0.727. Although these 

results do not exactly replicate those of Parker and Julliard (2005) with 25 size and book-to-market 
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portfolios, the remarkable increase in cross-sectional explanatory power in horizons from ܵ ൌ 9 to 

ܵ ൌ 15 shows that the ultimate consumption risk with business-cycle horizon is closely connected to 

the cross-section of investment-sorted returns. Second, when ܵ is greater than 5 quarters, the term to 

capture the equity premium, ߙௌ , has its quarterly absolute value under 1% and statistically 

insignificant. Compared to the contemporaneous consumption CCAPM, this shows that the ultimate 

consumption risk explains the overall level of equity premium.  

The Hansen-Jagannathan distance in Panel A of Table 2 and 3 rejects the consumption CAPM for 

all values of ܵ when we use prespecified weighting matrix for GMM estimation. In Panel B of Table 

2, the consumption CAPM is not rejected in 5% significance level only when ܵ ൌ 9. Moreover, in 

Panel B of Table 3, the ultimate consumption CAPM is not rejected in 10% significance level when 

ܵ ൒ 5. Although the success of the model might come from the fact that ten value-weighted 

investment-sorted portfolios show relatively small cross-sectional variation, it can be interpreted as 

additional evidence of superior performance of the ultimate consumption CAPM. 

We also perform the same GMM estimation with 25 equally and value weighted size-investment 

portfolios in Table A1 and A2 of the Appendix. The patterns of the results repeat those in Table 2 and 

3. Focusing on the results from a prespecified weighting matrix, the ultimate consumption model 

attains the highest ܴଶ when ܵ ൌ 11, repeating the results in Parker and Julliard (2005). 

In sum, the ultimate consumption model performs better than the contemporaneous consumption 

model in explaining the cross-section of investment-based returns. Given the striking empirical 

performance, we further investigate the performance of the linearized model with simple regression 

approaches.  

 

4.2 Performance of the Linearized Model 

In this subsection, we examine the linearized ultimate consumption model’s performance to price the 

investment-based portfolios and compare it to that of the other well-known asset pricing models.  
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We first conduct the Fama-MacBeth regressions for the linearized model. First, we perform the 

time-series regressions for the ultimate consumption models as follows: 

ܴ௧
௘௜ ൌ ݅ߙ ൅ ൅1൅ܵݐܿ߂ߚ

݅ Δܿݐ൅ܵ ൅ ݐߟ
݅ ݅	ݎ݋݂	 ൌ 1,2,⋯ ,ܰ                        (8) 

In the second-pass regressions, we use the betas from the time-series regression and perform cross-

sectional regressions as follows: 

௧ܴൣܧ
௘௜൧ ൌ ଴ߣ ൅ ௱௖೟శೄߚௌߣ

௜ ൅ ߳ௌ
௜                           (9) 

In Table 6, we report the cross-sectional coefficients ߣௌ with their Fama-MacBeth t-statistics, the 

adjusted t-statistics in Shanken (1992), and the cross-sectional ܴଶs. Panel A, B, C, and D exhibit the 

results when the test assets are ten equally and value weighted investment-based portfolios and 25 

equally and value weighted size-investment portfolios.  

The results in Table 6 show that the ultimate consumption models perform better than the 

contemporaneous consumption model. Although we cannot firmly argue that the higher cross-

sectional ܴଶ in cross-sectional regression is a robust measure to examine the model’s performance 

following Lewellen, Nagel and Shanken (2010), the cross-sectional ܴଶ attains its maximum at 

ܵ ൌ 11 in every Panel with the maximum value of 0.54 in Panel C. The size of the risk premium of 

consumption beta increases with the horizon ܵ. Some of the risk premiums are significant when 

ܵ ൌ 11 in Panel B, C, and D according to the Fama-MacBeth t-statistics. However, the Shanken 

(1992) t-statistics are not significant in any cases, which implies that the linearized model’s 

performance is not perfectly successful in explaining the cross-section of returns. Overall, the results 

from the classical Fama-MacBeth regression provide evidence that the ultimate consumption model 

also outperforms the contemporaneous consumption model in the log-linearized version. 

 

4.3 Performance Test to Explain the Investment-Based Spreads 

We now turn our focus to the ability of asset pricing models to explain the spread between the low and 

high investment portfolios. First, we construct the risk premiums from the Fama-MacBeth regressions 
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of 40 test assets. The 40 test assets include ten size, ten book-to-market, ten momentum, and ten 

investment portfolios. The size, value, and investment portfolios are equally weighted, and the 

momentum portfolios are value weighted. The returns of test assets are from the Kenneth French’s 

website. The factor pricing models include the ultimate consumption model, the Fama-French three 

factor model, and the Chen-Roll-Ross model. In estimating the risk premiums, we assume that the risk 

premium is constant over time, and perform the Fama-MacBeth full sample regressions following 

Griffin, Ji and Martin (2003).  

We report the estimated risk premiums from the 40 test assets in Table 5. We report the cross-

sectional loadings ߣௌ෢ and the pricing error term ߣ଴, the Fama-MacBeth t-statistics in parentheses, 

and the cross-sectional ܴଶ. In Panel A, we show the results from the ultimate consumption model. We 

observe that the consumption model does well in explaining the average level of stock portfolios, 

since the estimated ߣ଴ is insignificant except for the case of ܵ ൌ 7. The risk premium term ranges 

from 0.8% to 5.7%, and is significant only when ܵ ൌ 11. The estimated cross-sectional ܴଶ is from 

20% to 48.5%, which are greater than those in Table 4 when we only use the investment-based 

portfolios. In Panel B and C, we display the results from the Fama-French three factor model and the 

Chen-Roll-Ross model. The Fama-French three factors exhibit significant factor loadings, where the 

risk premium on the market factor is negative. The risk premiums Chen-Roll-Ross factors show a 

similar pattern in Cooper and Priestley (2011), which is natural since the regression in Panel C is a 

quarterly version of the same regression. The constant terms in Panel B and C are 8.2% and 2.9% per 

quarter, and statistically significant. This implies that the Fama-French model cannot capture the zero-

beta rate, and so the Chen-Roll-Ross model does. Finally, the cross-sectional ܴଶs of the Fama-French 

and Chen-Roll-Ross model are 65.4% and 89.8%, which are higher than the consumption-based 

models. 

Having estimated the risk premiums of the asset pricing factors, we test whether the risk factors can 

well explain the lowest (highest) investment portfolio return and the low-minus-high spread. We 

estimate the factor loadings of the portfolios from the time-series regressions, and multiply the risk 
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premium estimates in Table 5 to get the expected model returns as in equation (6). The results are 

shown in Table 6, with the equally weighted portfolios as the test assets, respectively. The results from 

the value weighted portfolios are qualitatively the same. We report the factor loadings, actual returns, 

explained returns, and the proportion of explained and actual returns for the lowest decile, highest 

decile, and their differences. 

In Panel A of Table 6, we report the actual and model implied returns of the lowest (highest) 

investment decile portfolio. For the sake of brevity, we focus on the ultimate consumption model of 

horizon ܵ ൌ 0, 11, 15, since the omitted horizons exhibit a monotonic pattern. First, although the 

factor loadings of the lowest and highest portfolios on the consumption growth do not differ 

significantly in every case, the loadings on the lowest decile is always greater than the highest decile. 

Second, the proportion of the explained and actual spread increases with the horizon ܵ, which repeats 

our previous estimation results. The contemporaneous consumption CAPM explains only 4% of the 

actual spread, while the ultimate consumption CAPM captures 27% and 48% of the actual premium. 

The explained spread increases from 0.1% to 1.7% when ܵ increases from 0 to 15. 

In Panel B of Table 6, we display the performance of the Fama-French model. First, the negative 

low-high difference of the market beta and positive differences of the SMB and HML beta both help 

explain the positive spread, since the estimated risk premium on MKT is negative in Table 5. As a 

result, the proportion of the explained and the actual spread is 36%. However, the model fails to 

capture the individual portfolio returns. The explained returns for the lowest and highest investment 

portfolios are -5% and -3.8%, respectively. This comes from the big negative premium of the market 

beta in Table 5.  

In Panel C of Table 6, the Chen-Roll-Ross model is tested. All but DEI loadings help explain the 

low-high spread, combined with their signs of risk premiums in Table 5. The wrong direction of DEI 

is negligible because its estimated risk premium in Table 5 is near zero. The ratio of the explained and 

actual returns is 67%, which is the highest among the three models tested.   

We confirm that the ultimate consumption model performs better than the contemporaneous 
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consumption model in explaining the actual spread of investment-sorted portfolios. The explained part 

of the spread is 27% and 48% of the actual spread when ܵ ൌ 11 and ܵ ൌ 16. The maximum value 

48% is greater than that of the Fama-French model. As reported in Cooper and Priestley (2011), the 

macroeconomic factor model is successful in explaining the cross-sectional difference in investment-

sorted portfolios, with 67% of explanatory power of the actual spread.  

We argue that the performance of the ultimate model is remarkable by the following reasons. First, 

the explained portfolio returns of the ultimate models are close to the actual ones. The actual returns 

are 5.9% and 2.3%, and the model implied returns of the ultimate model with ܵ ൌ 15 are 4.3% and 

2.6%, respectively. The Fama-French model desperately fails in that its explained returns are -5.1% 

and -3.8%. Even though the Chen-Roll-Ross model generates the highest spread, the explained returns 

are 2.5% and 0.1%, which are far from the actual returns. Second, the performance of the ultimate 

model can be highlighted since it is one-factor model. Although its performance is not better than the 

Chen-Roll-Ross model in explaining the actual spread, the ultimate consumption model gives a one-

factor explanation of portfolio returns, with its comparable explanatory power. 

 

4.4 Business-Cycle Frequency Relation between Consumption and Investment-

based Returns 

In this subsection, we see what is behind the success of the ultimate consumption model. Parker and 

Julliard (2005) explain their success of the ultimate consumption model in pricing the 25 size and 

book-to-market portfolios with the predictability of future consumption by SMB and HML factors. If 

the investment-based factor predicts the future consumption, the covariance of the investment-based 

portfolios and the ultimate consumption would increase with the horizon. This results in the better 

performance of the ultimate consumption model. We follow Parker and Julliard (2005) to test the 

predictability. We construct the investment factor, INV, as the difference of the lowest and highest 

equally weighted investment decile portfolio returns. Then we perform the predictive regressions of 
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the long-horizon consumption growths on the investment factor.  

In Table 7, we show the results of predictive regressions as the same way in Parker and Julliard 

(2005). Panel A displays our predictive regression results. When ܵ ൌ 0, the coefficient is 0.7%, with 

the regression ܴଶ of 0.2%. The regression coefficient is significantly different from zero with 10% 

confidence when ܵ ൒ 11, and is significant with 5% confidence when S ൒ 15. The regression ܴଶ is 

almost monotonically increasing with ܵ, with its maximum of 2.8% when ܵ ൌ 15. The increase in 

ܴଶ is remarkable after we consider the increase in the variance of consumption growth in Panel C. In 

Panel B, we report the results of reverse regression to examine whether the covariance future 

consumption growth, and the results confirm that we cannot find correlation between the investment 

factor and contemporaneous consumption growth where there is significantly positive relationship 

when ܵ ൒ 11. 

When we accept the predictability of future consumption growth by the investment factor, as shown 

here and in Min, Kang and Lee (2015), the superior performance of the ultimate consumption model 

can be justified. Moreover, the ܴଶ in Table 7 does not exhibit the hump-shaped pattern in Parker and 

Julliard (2005). Rather, from the horizons we examined, the longest horizon, ܵ ൌ 15, has the highest 

ܴଶ. This can be connected to our previous results, which show the best performance when ܵ ൌ 15 in 

most cases. Therefore, ܵ ൌ 11 may not be the “best” horizon in explaining the investment-based 

returns. 

Why the best horizon differs with the test assets? A potential explanation could be made when we 

focus on the business-cycle consumption risk by Bandi and Tamoni (2015). They decompose the 

consumption growth into its subcomponents based on their persistence. In their model, the business-

cycle components, with periodicity between 2 years and 8 years, play an important role in explaining 

the cross-section of returns. The emphasis on the business-cycle component may correspond to the 

small persistent component in Bansal and Yaron (2004). Taking the long-horizon consumption growth, 

which is called aggregation, can be a good way to eliminate the short-horizon components (Bandi, 

Perron, Tamoni and Tebaldi (2014)). Therefore, we do not restrict ourselves to define the “best” 
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horizon, which may differ from asset to asset, and focus on the “business-cycle” frequency 

consumption shocks as the potential driver of the success of the ultimate consumption model. 

 

5   Conclusion 

Recently, the investment-based returns are spotlighted by researchers, and the investment factor is 

considered as an important risk measure. If the investment-based returns carry economic risk, it is 

natural to investigate if it is related to the consumption risk. Given its close linkage to the business 

cycle variables, we examine whether the ultimate consumption growth, which has the simplest form 

as a unique asset pricing factor, is related to the investment-based returns. 

Employing the GMM approach by Parker and Julliard (2005), we find that the ultimate 

consumption model performs significantly better than the contemporaneous consumption model. We 

find that the ultimate consumption model’s performance is comparable to the Fama-French three 

factor model and the Chen-Roll-Ross model, which implies that the ultimate consumption risk does a 

significant role in describing the investment-based returns. However, we do not conclude that the 

“best” horizon for the ultimate consumption growth is three years when size and book-to-market 

portfolios are used in Parker and Julliard (2005). We interpret our empirical evidence as a result of the 

close relationship between investment-based returns, with some slack in determining the best horizon.  
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Table 1. Summary Statistics 
Panel A presents the mean quarterly returns of 10 investment-sorted portfolios. Panel B shows the mean 
quarterly returns of 25 size-investment double-sorted portfolios. ݌ሺ݂݀݅ሻ shows the p-value of the test whether 
the mean lowest-minus-highest investment portfolio return is different from zero. The sample period is from 
1963:Q3 to 2011:Q1 (187 quarters). 

 
 

Panel A: 10 INV-sorted portfolios 

INV Low 2 3 4 5 6 7 8 9 High p(dif)

EW 0.059 0.050 0.045 0.043 0.042 0.040 0.041 0.039 0.036 0.023 0.000

VW 0.036 0.035 0.031 0.030 0.029 0.028 0.031 0.027 0.029 0.022 0.003

Panel B: 25 SIZE/INV double-sorted portfolios 

EW INV 1 2 3 4 5 (1-5) p(dif) 

SIZE 1 0.062 0.051 0.047 0.045 0.030 0.031 0.000 

2 0.041 0.042 0.042 0.042 0.026 0.015 0.001 

3 0.043 0.042 0.037 0.040 0.026 0.017 0.000 

4 0.037 0.036 0.036 0.035 0.029 0.008 0.080 

5 0.037 0.031 0.031 0.029 0.023 0.013 0.006 

                  

VW INV 1 2 3 4 5 (1-5) p(dif) 

SIZE 1 0.045 0.044 0.043 0.041 0.026 0.019 0.000 

2 0.041 0.040 0.041 0.041 0.028 0.013 0.002 

3 0.040 0.041 0.036 0.038 0.028 0.012 0.008 

4 0.036 0.034 0.035 0.035 0.029 0.007 0.163 

      5 0.033 0.028 0.027 0.027 0.025 0.008 0.088  
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Table 2. GMM Estimation Results 
This table displays the GMM estimation results of the ultimate consumption models from equation (4) and (5) 
with 10 equally weighted investment-sorted portfolios as test assets. Panel A shows the results from the GMM 
with prespecified weighting matrix, and Panel B depicts the results from the efficient GMM. The numbers in the 
brackets are the standard errors, and the numbers in the squared brackets are p-values of test statistics. The 
column HJ shows the Hansen-Jagannathan distance and its p-value is calculated from 10,000 simulations. The 
column J shows the Hansen’s J-test statistic. The sample period is from 1963:Q3 to 2011:Q1.  
 

Panel A: Prespecified weighting matrix   Panel B: Efficient GMM 

S ܴଶ ߛ ߙ HJ ܴଶ ܬ ߛ ߙ 

0 0.000 0.027 5.002 0.383 -0.033 0.019 57.764 40.910

(0.008) (82.881) [0.001] (0.007) (51.205) [0] 

1 0.003 0.028 0.792 0.384 -0.071 0.014 33.898 42.066

(0.01) (35.722) [0] (0.009) (19.683) [0] 

3 0.059 0.016 19.038 0.342 -0.012 0.012 30.733 30.982

(0.015) (27.776) [0] (0.011) (15.665) [0] 

5 0.164 -0.006 30.282 0.279 0.145 0.021 32.012 22.021

(0.015) (13.337) [0] (0.01) (9.556) [0.005]

7 0.125 0.003 20.432 0.323 0.053 0.022 24.146 24.875

(0.013) (11.971) [0] (0.01) (8.728) [0.002]

9 0.478 -0.009 40.591 0.198 0.448 0.027 33.248 15.380

(0.013) (12.871) [0] (0.008) (8.432) [0.052]

11 0.498 -0.005 42.078 0.214 0.438 0.022 34.600 15.902

(0.012) (16.84) [0] (0.008) (9.037) [0.044]

13 0.535 0.003 42.476 0.204 0.496 0.021 42.425 18.904

(0.009) (18.151) [0] (0.007) (10.166) [0.015]

15 0.671 0.006 48.951 0.197 0.650 0.025 41.244 21.156

   (0.011) (22.59) [0]     (0.007) (10.403) [0.007]
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Table 3. GMM Estimation Results 
This table displays the GMM estimation results of the ultimate consumption models from equation (4) and (5) 
with 10 value weighted investment-sorted portfolios as test assets. Panel A shows the results from the GMM 
with prespecified weighting matrix, and Panel B depicts the results from the efficient GMM. The numbers in the 
brackets are the standard errors, and the numbers in the squared brackets are p-values of test statistics. The 
column HJ shows the Hansen-Jagannathan distance and its p-value is calculated from 10,000 simulations. The 
column J shows the Hansen’s J-test statistic. The sample period is from 1963:Q3 to 2011:Q1.  
 

Panel A: Prespecified weighting matrix   Panel B: Efficient GMM 

S ܴଶ ߛ ߙ HJ ܴଶ ܬ ߛ ߙ 

0 0.052 0.022 -49.824 0.146 -0.117 0.016 42.098 18.919

(0.006) (53.022) [0.008] (0.006) (32.823) [0.015]

1 0.106 0.024 -28.772 0.139 -0.342 0.013 23.558 17.849

(0.007) (32.389) [0] (0.007) (19.549) [0.022]

3 0.002 0.018 -3.901 0.129 -0.150 0.009 24.655 13.073

(0.008) (25.636) [0] (0.009) (14.017) [0.109]

5 0.023 0.022 -12.174 0.149 -0.137 0.008 20.308 12.334

(0.007) (19.667) [0] (0.007) (8.654) [0.137]

7 0.287 -0.002 22.849 0.065 0.285 0.007 21.724 9.322 

(0.009) (11.448) [0] (0.007) (7.602) [0.316]

9 0.727 0.003 30.941 0.051 0.662 0.010 24.129 6.617 

(0.009) (10.425) [0] (0.006) (7.782) [0.578]

11 0.615 0.004 30.983 0.073 0.510 0.009 20.343 9.311 

(0.009) (13.166) [0] (0.006) (8.344) [0.317]

13 0.437 0.005 31.283 0.068 0.404 0.006 24.614 7.437 

(0.009) (19.237) [0] (0.006) (11.982) [0.49] 

15 0.282 0.007 29.304 0.083 0.245 0.007 21.953 10.027

   (0.009) (17.455) [0]     (0.006) (11.803) [0.263]
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Table 4. Cross-sectional regressions of Linearized Ultimate Consumption Models 
This table displays the results of the following cross-sectional regressions. 

௧ܴൣܧ
௘௜൧ ൌ ଴ߣ ൅ ௱௖೟శೄߚௌߣ

௜ ൅ ߳ௌ
௜ , 

where ߚ௱௖೟శೄ
௜  is the loading from the time-series regressions ܴ௧

௘௜ ൌ ௜ߙ ൅ ௱௖೟శభశೄߚ
௜ Δܿ௧ାௌ ൅ ௧ߟ

௜ .  
Panel A and B show the results with ten equally and value weighted investment portfolios, respectively. Panel C and D show the results with 25 equally and value 
weighted size-investment portfolios, respectively. The sample period is from 1963:Q3 to 2011:Q1. 
 

Horizon 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Panel A: INV EW 

coeff 0.003 0.002 0.006 0.008 0.006 0.010 0.013 0.015 0.030 0.032 0.041 0.055 0.054 0.058 0.070 0.073 

FM t 1.206 0.451 0.958 1.081 0.726 0.926 1.090 0.987 1.587 1.532 1.680 2.086 2.024 2.359 3.703 4.549 

SH t 1.017 0.439 0.843 0.955 0.685 0.829 0.928 0.838 1.037 1.004 0.978 1.021 1.036 1.186 1.664 2.036 

ܴଶ 0.080 0.011 0.049 0.063 0.028 0.045 0.061 0.049 0.118 0.108 0.120 0.150 0.122 0.096 0.138 0.151 

Panel B: INV VW 

coeff 0.000 -0.002 -0.003 -0.002 -0.003 -0.004 0.000 0.006 0.010 0.014 0.017 0.019 0.018 0.019 0.019 0.015 

FM t 0.089 -0.747 -0.798 -0.410 -0.498 -0.487 0.041 0.546 0.998 1.289 1.476 1.672 1.496 1.628 1.595 1.093 

SH t 0.089 -0.722 -0.762 -0.404 -0.488 -0.476 0.041 0.531 0.924 1.149 1.274 1.432 1.312 1.415 1.397 1.013 

ܴଶ 0.001 0.078 0.081 0.021 0.031 0.027 0.000 0.026 0.057 0.083 0.092 0.090 0.069 0.069 0.062 0.033 

Panel C: SIZEINV EW 

coeff 0.005 0.006 0.010 0.013 0.015 0.020 0.025 0.030 0.041 0.045 0.053 0.063 0.071 0.086 0.092 0.092 

FM t 2.176 1.712 1.638 1.903 1.801 1.992 2.179 2.243 2.547 2.571 2.668 2.832 2.861 3.092 3.419 3.476 

SH t 1.507 1.338 1.250 1.387 1.359 1.383 1.428 1.389 1.361 1.346 1.293 1.246 1.188 1.122 1.219 1.278 

ܴଶ 0.341 0.211 0.147 0.257 0.250 0.307 0.384 0.415 0.489 0.506 0.536 0.542 0.513 0.470 0.441 0.421 

Panel D: SIZEINV VW 

coeff 0.002 0.003 0.003 0.005 0.006 0.009 0.015 0.020 0.030 0.033 0.039 0.047 0.053 0.066 0.068 0.067 

FM t 1.149 0.800 0.509 0.765 0.797 1.004 1.328 1.548 1.966 2.012 2.151 2.359 2.412 2.737 3.048 3.042 

SH t 1.036 0.761 0.495 0.723 0.752 0.901 1.104 1.186 1.285 1.288 1.282 1.289 1.254 1.244 1.391 1.455 

ܴଶ 0.129 0.063 0.020 0.053 0.063 0.096 0.172 0.235 0.319 0.343 0.387 0.397 0.375 0.363 0.347 0.326 
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Table 5. Estimates of Risk Premiums 
We estimate the risk premiums of the risk factors in three asset pricing models: the consumption CAPM, the 
Fama-French three factor model, the Chen-Roll-Ross model. We estimate the factor loadings of the asset pricing 
factors in time-series regressions of 40 test assets in the first stage. In the second stage, we use those loadings to 
estimate the risk premiums. For the test assets, we use ten equally weighted size portfolios, ten equally weighted 
book-to-market portfolios, ten value weighted momentum portfolios, and ten equally weighted investment 
portfolios. We report the estimated risk premium coefficients from the second stage. 
 

Panel A: CCAPM 

λ଴ ܿ߂ ܴଶ 

0 0.017 0.008 0.199 

(1.84) (1.623) 

3 0.017 0.014 0.178 

(1.955) (1.674) 

7 0.019 0.018 0.155 

(2.267) (1.581) 

11 0.016 0.037 0.358 

(1.594) (2.063) 

15 0.011 0.057 0.485 

(0.905) (1.961) 

Panel B: Fama-French three factor model 

 λ଴ MKT SMB HML     ܴଶ 

0.082 -0.056 0.011 0.013 0.654 

 (5.13) (-3.225) (2.101) (2.31)       

Panel C: Chen-Roll-Ross model 

λ଴ MP UI DEI UTS UPR ܴଶ 

0.029 0.037 0.003 0.000 0.041 -0.017 0.898 

 (2.718) (4.207) (0.697) (0.186) (2.869) (-3.425)   
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Table 6. Average Returns and Expected Return Spreads  
This table displays the loadings on the mimicking portfolios of the asset pricing factors for the lowest and highest equally weighted investment decile.  

௧ܴൣܧ
௘௜൧ ൌ ிߣ

ᇱ  ࢼ
where ࢼ is the vector of factor loadings from the time-series regression, and ߣி is the vector of risk premiums estimated in Table 5. “Actual” column is the sample mean 
of the portfolio. “Explained” column displays the model-implied returns. “Proportion” column shows the ratio of the model-implied spread and actual spread. Panel A, B, 
and C show the results from the ultimate consumption CAPM, Fama-French three factor model, and Chen-Roll-Ross model, respectively. 
 

Panel A: ultimate CCAPM   Panel B: Fama-French three factor model 

S   ܿ߂ actual explained proportion   MKT SMB HML     actual explained proportion 

0 Low 3.479 0.059 0.028 Low 1.102 1.694 0.363 0.059 -0.051 

(2.023) (11.184) (11.571) (2.31) 

High 3.300 0.023 0.027 High 1.147 1.363 -0.144 0.023 -0.038 

(2.272) (20.283) (15.649) (-1.672)

dif 0.179 0.036 0.001 0.040 dif -0.046 0.331 0.507 0.036 0.013 0.356 

p(dif) (0.468) p(dif) (0.657) (0.027) (0.003)

11 Low 0.884 0.059 0.033 Panel C: Chen-Roll-Ross model 

(2.621) MP UI DEI UTS UPR actual explained proportion 

High 0.623 0.023 0.023 Low 0.727 0.046 4.529 0.541 1.463 0.059 0.025 

(1.97) (13.297) (0.381) (5.698) (13.144) (20.125)

dif 0.260 0.036 0.010 0.267 High 0.344 -1.206 5.578 0.464 1.658 0.023 0.001 

p(dif) (0.287) (6.721) (-10.164) (14.252) (21.059) (24.093)

15 Low 0.762 0.059 0.043 dif 0.383 1.252 -1.049 0.077 -0.195 0.036 0.024 0.673 

(2.533) p(dif) (0) (0) (0.881) (0.05) (0.974)

High 0.457 0.023 0.026                 

(1.688)

dif 0.305 0.036 0.017 0.481 

 p(dif) (0.226)                        
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Table 7. Forecasting the Future Consumption by Investment-based Factors  
We construct the INV factor as the difference of the lowest and highest equally weighted investment decile 
portfolios. In Panel A, we show the time-series regression coefficients and ܴଶs when we forecast the ultimate 
consumption growth with the INV factor. In Panel B, we report the results of reverse-regressions, which 
forecasts future INV factor with the ultimate consumption growth. Panel C displays the variances of ultimate 
consumption growth. 
 
 

Panel A: cons. Growth on 
INV 

Panel B: INV on future cons. 
Growth 

Panel C: Variance of cons. 
Growth 

S coeff ܴଶ coeff ܴଶ   
0 0.002  0.000 0.375  0.002  0.662  

0.227  0.576  
1 0.007  0.002 0.466  0.006  1.427  

0.516  1.169  
2 0.016  0.005 0.417  0.008  2.350  

0.940  1.291  
3 0.023  0.007 0.211  0.003  3.410  

1.154  0.821  
4 0.018  0.003 0.237  0.006  4.435  

0.718  1.103  
5 0.025  0.005 0.231  0.007  5.419  

0.927  1.209  
6 0.030  0.006 0.186  0.005  6.375  

0.974  1.056  
7 0.030  0.005 0.210  0.008  7.339  

0.875  1.457  
8 0.038  0.008 0.218  0.009  8.015  

1.115  1.718  
9 0.044  0.009 0.211  0.009  8.726  

1.240  1.759  
10 0.046  0.009 0.277  0.017  9.366  

1.286  2.561  
11 0.064  0.017 0.274  0.018  10.149  

1.787  2.629  
12 0.067  0.017 0.253  0.016  10.994  

1.882  2.489  
13 0.066  0.016 0.301  0.025  11.829  

1.804  2.867  
14 0.083  0.024 0.318  0.029  12.656  

2.225  3.026  
15 0.092  0.028 0.304  0.027  13.367  
  2.435    2.875     
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Appendix: The GMM estimation results for the size-investment double-sorted portfolios 
 
Table A1. GMM Estimation Results 
This table displays the GMM estimation results of the ultimate consumption models from equation (4) and (5) 
with 25 equally weighted size-investment double-sorted portfolios as test assets. Panel A shows the results from 
the GMM with prespecified weighting matrix, and Panel B depicts the results from the efficient GMM. The 
numbers in the brackets are the standard errors, and the numbers in the squared brackets are p-values of test 
statistics. The column HJ shows the Hansen-Jagannathan distance and its p-value is calculated from 10,000 
simulations. The column J shows the Hansen’s J-test statistic. The sample period is from 1963:Q3 to 2011:Q1.  
 

Panel A: Prespecified weighting matrix   Panel B: Efficient GMM 

S rsq alpha gamma HJ rsq alpha gamma jtest 

0 0.141 0.009 100.426 0.838 0.085 0.026 45.388 68.613

(0.016) (78.127) [0] (0.006) (23.535) [0] 

1 0.045 0.016 18.540 0.762 0.046 0.020 20.447 69.441

(0.011) (32.624) [0] (0.005) (13.899) [0] 

3 0.114 0.013 18.448 0.800 -0.074 0.025 -6.985 70.005

(0.012) (23.262) [0] (0.005) (11.872) [0] 

5 0.344 -0.003 27.277 0.960 0.210 0.025 4.215 98.898

(0.014) (12.944) [0] (0.005) (6.722) [0] 

7 0.368 -0.001 22.276 0.919 0.007 0.024 -3.300 77.099

(0.012) (10.297) [0] (0.005) (6.736) [0] 

9 0.574 0.005 25.115 0.894 -0.028 0.025 -1.951 71.659

(0.01) (8.493) [0] (0.005) (6.402) [0] 

11 0.630 0.002 30.221 0.831 0.552 0.021 19.802 66.100

(0.01) (11.879) [0] (0.005) (5.419) [0] 

13 0.643 0.004 37.245 0.886 0.602 0.016 29.662 59.514

(0.009) (18.381) [0] (0.005) (7.061) [0] 

15 0.727 0.007 46.580 0.836 0.656 0.018 31.869 56.332

   (0.01) (28.243) [0]     (0.005) (7.71) [0] 
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Table A2. GMM Estimation Results 
This table displays the GMM estimation results of the ultimate consumption models from equation (4) and (5) 
with 25 value weighted size-investment double-sorted portfolios as test assets. Panel A shows the results from 
the GMM with prespecified weighting matrix, and Panel B depicts the results from the efficient GMM. The 
numbers in the brackets are the standard errors, and the numbers in the squared brackets are p-values of test 
statistics. The column HJ shows the Hansen-Jagannathan distance and its p-value is calculated from 10,000 
simulations. The column J shows the Hansen’s J-test statistic. The sample period is from 1963:Q3 to 2011:Q1.  
 
 

Panel A: Prespecified weighting matrix   Panel B: Efficient GMM 

S rsq alpha gamma HJ rsq alpha gamma jtest 

0 0.063 0.015 47.314 0.554 -0.033 0.022 -10.754 56.072

(0.008) (63.013) [0.001] (0.005) (25.985) [0] 

1 0.022 0.017 10.979 0.525 0.015 0.021 4.964 55.289

(0.009) (33.469) [0] (0.005) (15.51) [0] 

3 0.058 0.015 13.091 0.553 -0.205 0.024 -20.344 53.327

(0.011) (26.086) [0] (0.005) (10.837) [0] 

5 0.267 0.002 22.062 0.628 -0.217 0.024 -12.128 53.957

(0.011) (14.649) [0] (0.005) (8.732) [0] 

7 0.348 0.004 17.726 0.605 -0.054 0.022 -2.300 55.836

(0.008) (10.11) [0] (0.005) (7.032) [0] 

9 0.528 0.008 19.916 0.618 0.087 0.021 2.222 56.430

(0.008) (8.657) [0] (0.005) (6.066) [0] 

11 0.587 0.007 22.946 0.644 0.117 0.021 2.981 57.030

(0.007) (10.837) [0] (0.005) (5.852) [0] 

13 0.552 0.007 28.250 0.702 0.091 0.021 2.999 57.455

(0.008) (17.08) [0] (0.005) (6.687) [0] 

15 0.555 0.009 34.331 0.732 0.275 0.019 9.957 58.332

   (0.009) (22.718) [0]     (0.005) (6.021) [0] 
 

 


