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1. Introduction 

 

It has been well established in the finance literature that various firm characteristics have 

predictability for stock returns in the cross-section. The recent paper by Conrad, Kapadia, and Xing (2014; 

hereafter CKX) documents that stocks with high predicted probability for extreme positive returns 

(jackpots) earn abnormally low returns on average. CKX provide evidence that individual investors with a 

preference for skewed, lottery-like payoffs bid up the prices of stocks with high jackpot probability, which 

leads to low returns on those stocks subsequently. Moreover, they show that the jackpot effect is stronger 

in stocks for which arbitrage costs are relatively higher, indicating that the high arbitrage costs prevent 

rational investors from arbitraging the jackpot effect away. Their findings are in line with the recent 

empirical studies which document that a variety of cross-sectional anomalies yield abnormal profits by 

taking short positions in overpriced stocks and become stronger when limits-to-arbitrage enable the 

overpricing to persist for a while (Nagel, 2005; Campbell, Hilscher, and Szilagyi, 2008; Stambaugh, Yu, 

and Yuan, 2012, 2015).1 

Inspired by CKX, this paper explores the cross-sectional relation between the predicted probability for 

extreme outcomes and future stocks returns from a different standpoint. We examine whether the 

probability for extremely low returns is also related to the cross-section of stock returns, while CKX focus 

only on the effect of extremely high returns. We are interested in the event of extremely low returns 

(namely, price crashes) for the following two reasons. First, extensive literature documents that aggregate 

stock market returns exhibit negative skewness, or asymmetric volatility – higher volatility associated 

with negative returns (French, Schwert, and Stambaugh, 1987; Nelson, 1991; Campbell and Hentschel, 

                                           
1  Nagel (2005) documents that the underperformance of stocks with high market-to-book, analyst forecast 
dispersion, turnover, or volatility is most pronounced among stocks with low institutional ownership. Campbell, 
Hilscher, and Szilagyi (2008) find that the puzzling low returns on financially distressed firms are more pronounced 
for stocks with informational or arbitrage-related frictions. Stambaugh, Yu, and Yuan (2012) provide evidence that a 
broad set of cross-sectional anomalies can be partially explained by sentiment-driven overpricing. Stambaugh, Yu, 
Yuan (2015) document that the idiosyncratic volatility puzzle is stronger among overpriced stocks, especially for 
stocks less easily shorted.  
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1992; Engle and Ng, 1993; Glosten, Jagannathan, and Runkle, 1993; Bekaert and Wu, 2000). More 

simply, examples of the largest price changes in the stock market are usually declines, rather than rises, 

including the crash of October 1987 and crash of 2008 to 2009. This asymmetric distribution of stock 

returns leads us to investigate whether the possibility of the event of price crashes, which occurs rarely 

but more frequently than jackpots, affects stock returns significantly. In addition, since investors may 

perceive a negative shock in stock prices more seriously than a positive shock, the effect of crashes, not 

the effect of jackpots alone, is also worthy of attention. Second, recent empirical asset pricing studies 

document that various cross-sectional anomalies arise mainly from underperformance of stocks with 

particular characteristics, indicating that overpricing is more prevalent than underpricing in the stock 

market (Nagel, 2005; Stambaugh et al., 2012; Avramov et al., 2013).2 These findings imply that firm 

characteristics that reflect the extent of overpricing would have predictability for future returns in the 

cross-section. Our conjecture is that the predicted probability of price crashes could measure the degree of 

overpricing. In other words, stocks with higher probability of price crashes tend to be relatively more 

overpriced today because the probability would be higher as the stock price is nearer to the peak of price 

bubbles, and therefore they would earn lower returns in the next period. 

For these reasons, this study investigates the cross-sectional relation between the predicted probability 

of price crashes and future stock returns, and explores sources of the cross-sectional relation that makes it 

differentiated from other cross-sectional anomalies, in particular the jackpot effect of CKX. To predict the 

ex-ante probability of price crashes for individual stocks, we employ a generalized logit model that 

extends the binary logit framework adopted in CKX. Specifically, we regard a firm’s future extreme 

positive (jackpots) or negative returns (crashes) as a ternary event, not defining each of the extreme 

events as binary ones, to prevent the predicted probability of crashes from being mixed up with that of 

jackpots. By building a model predicting two mutually exclusive events jointly, we can distinguish the 

                                           
2 These findings are consistent with arbitrage asymmetry termed by Stambaugh et al. (2015), which means that 
investors willing to buy an underpriced stock are reluctant or unable to sell short an overpriced stock, due to short-
sale constraints. 
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cross-sectional return predictability of crash probability from that of jackpot probability. The estimation 

result of the generalized logit model shows that a firm’s high past returns, high volatility, high skewness, 

low age, few tangible assets, and high sales growth predict high probabilities for the firm’s future extreme 

returns in both directions, but the sensitivity of each predictor is larger in magnitude for future crashes 

than for future jackpots. 

By constructing decile portfolios sorted on the predicted probability of price crashes, we find that 

stocks with higher crash probability earn lower average returns subsequently. The long-short strategy that 

goes long the lowest and short the highest crash probability decile yields the Fama-French three-factor 

alpha of 0.79% per month with a t-statistic of 3.60, which is largely due to the substantial 

underperformance of the highest decile. The highest crash probability portfolio consists of small and 

growth stocks with high prior returns in recent months, low liquidity, and high turnover. Although stocks 

with high crash probability share very similar characteristics with stocks with high jackpot probability, the 

negative cross-sectional relation between crash probability and future returns does not weaken even if the 

jackpot probability is controlled for, indicating that the crash probability effect is clearly distinct from the 

jackpot effect. Moreover, from both portfolio-level and firm-level analyses, we also find that the cross-

sectional return predictability of crash probability is retained after controlling for a large set of variables 

including idiosyncratic volatility of Ang et al. (2006), maximum daily return of Bali, Cakici, and 

Whitelaw (2011), analyst forecast dispersion of Diether, Malloy, and Scherbina (2002), and firm 

characteristics such as size, book-to-market ratio, past returns, liquidity, and turnover, all of which are 

closely related to both crash probability and stock returns in the cross-section. 

Since the abnormally low returns on stocks with high crash probability cannot be understood under 

the efficient markets view, which predicts that the low returns should be exploited quickly by rational 

arbitrageurs, we investigate whether the underperformance of stocks with high crash probability becomes 

stronger when limits-to-arbitrage become higher. Consistent with the previous empirical studies on 

anomalies as well as theories on limited arbitrage, the crash probability effect is particularly pronounced 

among small, low-priced, illiquid, and low-analyst-coverage stocks, which indicates that the low average 
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returns of stocks with high crash probability result from persistent overpricing and high costs to arbitrage. 

On the other hand, we find evidence that stocks with high crash probability are overpriced regardless of 

the firms’ institutional ownership, which makes the crash probability effect clearly differentiated from the 

previously documented anomalies including the jackpot effect of CKX. 

That overpricing of stocks with high crash probability is not arbitraged away even among stocks 

owned largely by institutions contradicts the standard limited arbitrage view, which predicts that 

overpricing is inversely related to institutional ownership because sophisticated investors always trade 

against mispricing unless arbitrage is limited by frictions like noise trader risk or short-sale constraints.3 

Alternatively, reasoning along the line of theories on rational speculation can help to understand our 

empirical finding. For example, DeLong et al. (1990b) document that rational traders may bid up the 

prices of securities above the fundamental values when they anticipate positive feedback traders buying 

the securities at even higher prices in the next period. Abreu and Brunnermeier (2002, 2003) document 

that rational investors optimally choose to ride a price bubble even though they are aware of the 

overvaluation, when coordinated selling pressure is necessary to burst the bubble but other arbitrageurs 

are not likely to attack the bubble yet. These theories consistently imply that trading against mispricing is 

not always the optimal strategy for rational investors, and they even contribute to price deviation from 

fundamentals.4 They provide an explanation of why overpricing is not arbitraged away even among 

stocks mainly held by sophisticated institutions. 

We document further evidence that supports the rational speculation view but refutes the standard 

limited arbitrage view. First, we find that overpricing of stocks with high crash probability is prevalent 

irrespective of market-wide sentiment, particularly for stocks owned largely by institutions. This indicates 

                                           
3 The standard theories on limited arbitrage include Miller (1977), Harrison and Kreps (1978), Delong et al. (1990a), 
Dow and Gorton (1994), and Shleifer and Vishny (1997). 
4 There is also empirical documentation that supports this line of theories. Brunnermeier and Nagel (2004) 
document that hedge funds invested heavily in technology stocks during the technology bubble, not exerting a 
correcting force on their prices, although this does not seem to be the result of unawareness of the bubble. Griffin, 
Harris, Shu, and Topaloglu (2011) document evidence that institutions bought technology stocks more aggressively 
than individuals during the technology bubble, which shows that rational investors sometimes fail to trade against 
mispricing. 
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that the crash probability effect is not entirely driven by investor sentiment, which is clearly differentiated 

from other cross-sectional anomalies examined in Stambaugh et al. (2012). Second, by examining 

changes in institutional holdings prior to the formation of decile portfolios, we find that stocks with 

higher crash probability have been bought more heavily by institutions during the recent six-quarter 

period. Moreover, institutional holdings for a firm increase continuously before the firm enters into the 

highest decile sorted by crash probability while they slow down afterward. This indicates that institutional 

investors have a tendency to buy an overvalued security until its price arrives at the peak of the bubble. 

Our findings are consistent with the rational speculation view which predicts that sophisticated 

institutions may not trade against overpricing but drive asset prices farther away from fundamentals. Also, 

they suggest that the cross-sectional return predictability of crash probability may arise at least partially 

from rational speculative bubbles driven by institutions, not entirely from overpricing driven by sentiment 

of individuals.   

Finally we compare the cross-sectional return predictability of crash probability to that of related 

anomaly variables. When constructing the double-sorted portfolios based on crash and jackpot 

probabilities, the negative cross-sectional relation between jackpot probability and portfolio returns is 

completely eliminated while the relation between crash probability and portfolio returns is not influenced. 

Moreover, we find that overpricing of stocks with high jackpot probability appears only following high 

investor sentiment periods, which indicates that the jackpot effect of CKX is due to sentiment-driven 

overpricing, unlike the crash probability effect. This different source of overpricing between the two 

related probabilities suggests a clue to why the jackpot effect is completely subsumed by the effect of 

crash probability. 

In comparison with failure probability of Campbell et al. (2008; hereafter CHS), the negative cross-

sectional relation between crash probability and future returns becomes insignificant when controlling for 

failure probability in the portfolio-level analysis. Nevertheless, we provide evidence that crash probability 

is still significantly related to the cross-section of stock returns when orthogonalized to failure probability, 

implying that it contains additional information about future returns not reflected in failure probability. 
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The sharpest contrast is that stocks in the highest decile sorted by crash probability have experienced 

large price increases before the entry into the highest decile and then their prices plummet after the 

portfolio formation, whereas the prices of stocks in the highest decile sorted by failure probability decline 

steadily before and after the entry into the highest decile. The sudden reversal of sharply increasing 

returns of stocks with high crash probability is consistent with growing price bubbles followed by 

bursting of them. This evidence suggests that the cross-sectional return predictability of crash probability 

may be attributed to the ability of timing the peak of price bubbles as well as the ability of picking 

relatively overpriced stocks.  

Our study is related with the extensive literature on the relation between firm characteristics and the 

cross-section of stock returns. Although standard asset pricing theories state that riskier assets should 

command higher expected returns, there is considerable evidence that the cross-sectional pattern of stock 

returns is related to various firm characteristics – for example, firm size (Banz, 1981), book-to-market 

ratio (Stattman, 1980), past returns (Jegadeesh and Titman, 1993), idiosyncratic volatility (Ang et al., 

2006), failure probability (CHS, 2008), maximum daily returns (Bali et al., 2011), and jackpot probability 

(CKX, 2014). Several empirical studies document that the cross-sectional relations, unexplained by the 

efficient markets view, are strong only when individuals own a large fraction of shares (Nagel, 2005; CHS, 

2008; CKX, 2014; Stambaugh et al., 2015). In addition, Stambaugh et al. (2012; hereafter SYY) provide 

comprehensive evidence that eleven cross-sectional anomalies that survive adjustments for risk exposure 

are caused by sentiment-driven overpricing. Our empirical findings on the effect of crash probability 

differ clearly from their results in that overpricing is also present among stocks owned largely by 

institutions, and that it is not associated with variations in investor sentiment. Our evidence casts doubt on 

the common presumption underlying both the efficient markets view and the standard limited arbitrage 

view that sophisticated traders always stabilize stock prices as arbitrageurs by trading against mispricing 

whenever possible. 

On the other hand, Edelen, Ince, and Kadlec (2016) examine seven well-known stock return 

anomalies and document that institutional investors have a strong propensity to buy stocks classified as 
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overvalued, which means that they trade contrary to anomaly prescriptions. Our empirical evidence on the 

crash probability effect is consistent with Edelen et al. (2016). However, our study differs from Edelen et 

al. (2016) in that we suggest an alternative explanation based on rational speculation, whereas they 

suggest that agency-induced preferences drive portfolio managers to seek stock characteristics associated 

with poor long-run performance. Although our evidence does not rule out their explanation, we argue that 

our empirical findings can be better understood in the context of the rational speculation view which 

presumes that sophisticated traders can destabilize stock prices by riding price bubbles even if arbitrage is 

not limited (DeLong et al., 1990b; Abreu and Brunnermeier, 2002, 2003).  

The remainder of this paper proceeds as follows. Section 2 describes data, defines the event of price 

crashes, and presents the empirical framework for predicting the ex-ante probability of price crashes. 

Section 3 shows empirical results on the relation between the predicted probability of price crashes and 

the cross-section of stock returns. Section 4 explores sources behind the cross-sectional relation and 

discusses distinctive features of them. Section 5 compares the cross-sectional return predictability of crash 

probability to other related anomalies. Section 6 concludes the paper.  

 

 

2. A Generalized Logit Model of Price Crashes 

 

2.1 Data 

We use the monthly and daily stock files from the Center for Research in Security Prices (CRSP) 

database over the period January 1926 through December 2015. Our sample includes NYSE, AMEX, and 

NASDAQ ordinary common stocks with CRSP share codes 10 and 11. Stocks with the end-of-month 

price below $5 per share are excluded from the sample. The monthly and daily stock returns are adjusted 

for any delisting returns provided in the CRSP database. Accounting variables to calculate various firm 

characteristics are obtained from annual Compustat data. We match the annual accounting data for the end 

of year t − 1 with the monthly CRSP data for June of year t to May of year t + 1. Since the variables 
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calculated using the Compustat data start from 1951, our analysis is restricted to the period June 1952 to 

December 2015. 

We obtain data on institutional ownership from Thomson Reuters Institutional (13F) Holdings 

database. Since the quarterly institutional holdings start in the first quarter of 1980, the analysis based on 

institutional holdings data is confined to the period after 1980. We also use the unadjusted file from 

Institutional Brokers Estimates Systems (I/B/E/S) database, which provide data on analyst earnings 

forecasts starting in January 1976.  

 

2.2 Definition of price crashes 

We call the event that a stock price bubble bursts a price crash. In other words, we refer to a low-

probability event of large negative returns as a price crash throughout the paper. To define the event of 

price crashes specifically, we follow CKX defining jackpot returns as extreme positive returns. A price 

crash is defined as the event of log returns less than −70% over the next 12 months. The cutoff of −70% 

corresponds roughly to a capital loss of 50% if the dividend yield is negligible. Symmetrically, we define 

a jackpot as achieving log returns greater than 70% over the next 12 months, which corresponds roughly 

to a capital gain of 100%.5 

The difference between our study and CKX is that we mainly consider the left tail, not the right tail, 

of a return distribution while both studies investigate the effect of expected extreme returns on subsequent 

stock returns. The following reasons motivate us to examine the event of extremely low returns. First, a 

stylized fact is that the largest movements in the stock market are often declines rather than rises. For 

example, during the period June 1952 to December 2015, seven out of the ten largest daily returns in the 

CRSP value-weighted index were negative.6 This asymmetry suggests that the rare event of extremely 

                                           
5 Although CKX define jackpot returns as annual log returns greater than 100%, they show that the jackpot effect 
they find is robust to different cutoffs. 
6 Of the ten largest daily movements, three occurred in October 1987 and the remaining seven occurred in October 
2008, both of which correspond to notorious periods of stock market declines. Moreover, the three positive returns 
were due to the recovery following large negative shocks, rather than independent price increases. 
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negative returns, which is relatively more frequent than jackpots, could affect stock prices significantly 

but differently, because investors might care more about negative shocks than positive shocks. Second, it 

has been documented that the abnormal profits based on various stock market anomalies come from 

taking short positions in overpriced stocks (Nagel, 2005; SYY, 2012, 2015; Avramov et al., 2013). 

Generally, due to short-sale constraints, it is more difficult to exploit arbitrage profits by selling 

overpriced stocks than by buying underpriced stocks, which leads to the prevalence of overpricing in the 

stock market. This implies that firm characteristics related to overpricing should have cross-sectional 

return predictability. We argue that stocks with high probability of price crashes are the most overpriced 

currently and should have low returns subsequently. It is because the probability of price crashes would 

become higher as the stock price approaches to the peak of the bubble. For these reasons, we investigate 

the cross-sectional return predictability of the probability of price crashes in this paper. Moreover, we 

investigate whether the return predictability of the crash probability is distinguished from the jackpot 

effect documented by CKX. 

 

2.3 Prediction of price crashes with a generalized logit model 

We employ a generalized logit model to estimate the ex-ante probability of extreme negative returns, 

or crash probability, extending the binary logit model in CKX. We basically follow the method of CKX in 

predicting price crashes, but we regard a firm’s realizing extreme positive or negative returns as a ternary 

event, rather than considering each of the extreme events as binary ones. Since stocks with high volatility 

are likely to have high probabilities for both crashes and jackpots, the two probabilities may be positively 

correlated, which makes it difficult to identify the effects of crashes and jackpots separately. This 

difficulty would be compounded if we predict two mutually exclusive events as if they are independent 

binary events. Since one of our goals is to distinguish the effect of crash probability on stock returns from 

the jackpot effect, we define price crashes and jackpots as exclusive but mutually dependent, and predict 

the probabilities of the two events jointly. 

Specifically, we model the probabilities of crashes and jackpots over the next 12 months as the 
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following distribution: 
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where Yi,t,t+12 is a ternary variable that equals −1 if the firm i’s log return during month t + 1 to t + 12 is 

less than −70%, 1 if the same return is greater than 70%, and zero otherwise. Xi,t denotes a vector of 

explanatory variables known at the end of month t. Equation (1) indicates that an increase in the value of 

α−1 + β−1Xi,t or α1 + β1Xi,t predicts a crash or jackpot over the next 12 months with higher probability, 

respectively. 

We follow CKX to choose explanatory variables to predict extreme positive and negative returns. 

They include past return (RET12), total volatility (TVOL), total skewness (TSKEW), firm size (SIZE), 

detrended turnover (DTURN), firm age (AGE), tangible assets (TANG), and sales growth (SALESG). The 

first five variables are employed according to previous empirical studies on skewness. Chen, Hong, and 

Stein (2001) forecast skewness based on cross-sectional regression specifications and find that an increase 

in trading volume and positive past returns predict negative skewness. Boyer, Mitton, and Vorkink (2010) 

document that firm characteristics such as firm size and idiosyncratic volatility are also important 

predictors for future idiosyncratic skewness. In addition, CKX add three new variables to predict future 

jackpot returns, and find that young and rapidly growing firms with fewer tangible assets are likely to 

experience extremely high returns. Based on these findings, we use the same variables to predict crashes, 

since we assume that the variables related to skewness and extreme outcomes could forecast extreme 

returns in both directions with either the same or the opposite signs. Annual accounting data such as 

tangible assets and sales growth for the end of year are matched with the monthly observations from June 

of the next year to ensure all information is observable at the beginning of the 12-month period over 

which a crash or jackpot is measured. Further details on these variables are provided in Appendix. 
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Table 1 shows the in-sample estimation results of our generalized logit model. Coefficients on all 

predictors are statistically significant at the 5% significance level, with an exception of DTURN as a 

predictor for crashes. The signs of the estimated parameters on crashes and jackpots are identical for all 

variables except SIZE, which implies that stocks with high crash probability also tend to have high 

jackpot probability. The result indicates that stocks with higher past returns, higher volatility, higher 

skewness, lower detrended turnover, lower age, fewer tangible assets, and higher sales growth tend to 

have higher probabilities of future extreme returns in both directions. For firm size (SIZE), the estimated 

coefficients have opposite signs each other. Price crashes are more likely to occur as firm size increases, 

whereas jackpots become more probable as firm size decreases. One notable thing is that, for most of the 

explanatory variables, the coefficient for crash probability is larger in magnitude than that for jackpot 

probability, which suggests that those variables are predictors for crashes rather than for jackpots. We also 

report the changes in odds ratios for one standard deviation change in each variable, where the odds ratio 

of each extreme event (crashes or jackpots) is defined as the probability of the event divided by the 

probability of non-extreme event. The result shows that total volatility (TVOL) has the largest impact on 

the odds ratios of both crashes and jackpots: one standard deviation increase in TVOL increases the odds 

ratio of crashes by 85.5% and the odds ratio of jackpots by 61.8%. For crashes, the next most influential 

variables are AGE, TANG, and SALESG. For jackpots, SIZE and AGE are relatively important predictors, 

which is consistent with the result in CKX. The pseudo-R2 of our generalized logit model, proposed by 

Nagelkerke (1991), is 12.8%. 

 

 

3. Probability of Price Crashes and the Cross-Section of Stock Returns 

 

3.1 Portfolios sorted on the predicted probability of crashes 

In this section, we examine the cross-sectional relation between the probability of price crashes and 

subsequent returns. In particular, we construct decile portfolios sorted on the predicted probability of 
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price crashes, and we observe returns on each portfolio realized in the subsequent month. To avoid look-

ahead bias, we re-estimate our generalized logit model using only historically available data for every 

month recursively over expanding estimation windows, starting from June 1952. We then calculate the 

out-of-sample predicted probability of price crashes in month t with a set of estimated parameters from 

the window ending in month t − 12, to ensure that the out-of-sample predictors are not observed before 

the period over which future extreme returns are measured. We call the out-of-sample predicted 

probability the crash probability (CRASHP). Likewise, we calculate the out-of-sample predicted jackpot 

probability (JACKPOTP). Based on CRASHP, decile portfolios are formed at the end of each month t, 

and monthly returns on each decile realized in month t + 2 are calculated. We allow one month of waiting 

between portfolio ranking and holding periods to eliminate the effect of short-term reversals. To make 

sure crash probability being predicted reliably, we use the predicted series from November 1971, and thus 

the portfolio returns begin in January 1972. 

Table 2 shows mean monthly returns and risk-adjusted returns on decile portfolios sorted by the crash 

probability. Panel A reports value-weighted portfolio returns, and Panel B reports equal-weighted 

portfolio returns. In Panel A, the mean value-weighted returns from decile 1 to decile 8 do not show a 

monotonic pattern. However, portfolio returns decrease sharply from decile 8 to decile 10, with the lowest 

return of 0.36% per month in decile 10. This cross-sectional pattern is commonly observed in previous 

studies (Diether et al., 2002; Ang et al., 2006; Bali et al., 2011; SYY, 2012; CKX, 2014), indicating that 

stocks in the highest decile are likely to be overpriced considerably. The return difference between decile 

10 and decile 1 is −0.64% per month, with a t-statistic of −1.68. To control for conventional risk factors, 

we also report CAPM alphas, Fama-French (1993) three-factor alphas, and Carhart (1997) four-factor 

alphas.7 The alphas on the zero-cost portfolio buying the highest and selling the lowest CRASHP decile 

are −1.16% (t-statistic = −3.57) for the CAPM, −0.79% (t-statistic = −3.60) for the three-factor model, 

and −0.50% (t-statistic = −2.55) for the four-factor model, respectively, all of which are statistically 

                                           
7 We obtain data of the monthly factor portfolio returns for the Fama-French three-factor model and the Carhart 
four-factor model from Kenneth French’s website (http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/). 
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significant. These results show that the cross-sectional difference in returns between the highest and 

lowest CRASHP portfolios cannot be explained by risk factors, which is largely due to abnormally low 

returns on the highest CRASHP decile. Equal-weighted portfolio returns in Panel B exhibit very similar 

patterns, which confirm the finding that stocks with high crash probability earn lower returns 

subsequently. 

To investigate the economic significance of the cross-sectional return predictability of CRASHP, we 

examine cumulative profits of the buy-and-hold trading strategies for each decile sorted on CRASHP 

during the period January 1972 to December 2015. Specifically, we calculate the cumulative values of the 

value-weighted decile portfolios when a dollar is invested in each portfolio at the beginning of the period 

and held through the period with monthly rebalancing based on one-month-lagged CRASHP. The result is 

shown in Figure 1. At the end of December 2015, the final value of the investment in the lowest CRASHP 

decile becomes 127.37 dollars, which is approximately 1.8 times the value of the CRSP value-weighted 

index, 69.07 dollars. In contrast, the same strategy investing in the highest CRASHP decile yields 0.53 

dollar, which is 1/130 of the passive benchmark. This result shows that the highest CRASHP decile 

underperforms significantly, implying that stocks with a high crash probability are overpriced. 

 

3.2 Crash probability and firm characteristics 

In the previous section, we find that stocks with the higher predicted probability of crashes earn 

significantly lower returns on average, which is not accounted for by risk factors. Since it has been 

documented in the literature that various firm characteristics are related to the cross-section of stock 

returns, our finding of the cross-sectional return predictability of crash probability could be resulted from 

other variables closely linked to the crash probability. In this section, we examine various characteristics 

of portfolios sorted on the crash probability, and investigate whether controlling for such characteristics 

affects the cross-sectional relation of the crash probability and stock returns. 

Table 3 presents firm characteristics and other related variables for decile portfolios sorted by 

CRASHP. They include jackpot probability (JACKPOTP), failure probability (FAILP) of CHS, 
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idiosyncratic volatility (IVOL), idiosyncratic skewness (ISKEW), maximum (MAX) and minimum (MIN) 

daily return in month t of Bali et al. (2011), price per share (PRC), institutional ownership (IO), analyst 

coverage (COVER), analyst forecast dispersion (DISP), market beta (BETA), log of market capitalization 

(SIZE), book-to-market ratio (BM), return in month t (REV), return over month t − 6 to t − 1 (MOM), 

illiquidity (ILLIQ), and share turnover (TURN). Definitions of these variables are given in Appendix. We 

report the cross-sectional mean of each variable winsorized at 25% and 75% for each decile, averaged 

across months over the period January 1972 to December 2015. 

The first set of characteristics includes variables related to volatility, skewness, or extreme payoffs, all 

of which are expected to be highly associated with CRASHP. Both JAKCPOTP and FAILP are very 

analogous to CRASHP in that they are the ex-ante probability of a rare event predicted by a logit model. 

As expected, both JACKPOTP and FAILP increase monotonically from the lowest to the highest 

CRASHP decile. The cross-sectional correlation of each variable with CRASHP is 0.79 and 0.30, 

respectively. The high correlations, combined with the negative relations between each of the two 

variables and the cross-section of returns documented by CKX and CHS, raise the possibility that the 

cross-sectional return predictability of CRASHP we document just mimics the effect of jackpot or failure 

probability. We address this concern later in Section 5. In addition, idiosyncratic volatility (IVOL) and 

skewness (ISKEW) increase with CRASHP, which indicates that stocks with high CRASHP experience 

highly volatile and skewed returns prior to the portfolio formation. The patterns in MAX and MIN across 

deciles are also clear and consistent with IVOL and ISKEW. 

The next set of variables is considered as measures of limits-to-arbitrage. It is known in the literature 

that the price per share (PRC) is related inversely to trading costs, institutional ownership (IO) indicates 

investor sophistication or short-sale constraints, and that analyst coverage (COVER) and analyst forecast 

dispersion (DISP) measure information uncertainty (Bhardwaj and Brooks, 1992; Hong, Lim, and Stein, 

2000; Nagel, 2005; Kumar and Lee, 2006; Zhang, 2006). Table 3 shows that stocks with higher CRASHP 

tend to have lower prices, lower institutional ownership, lower analyst coverage, and higher dispersion in 

analyst forecasts. The strong associations of CRASHP with these variables consistently indicate that 
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stocks with high CRASHP are costly to arbitrage and thus mispricing is not likely to be eliminated. The 

relation between the CRASHP effect and limits-to-arbitrage is discussed in Section 4. 

The final set of variables comprises firm characteristics known as determinants of stock returns in the 

cross-section. Market beta (BETA) increases from the lowest to the highest CRASHP decile. On the other 

hand, firm size (SIZE) and book-to-market ratio (BM) decrease clearly, indicating that the highest 

CRASHP decile consists of small and growth stocks on average. This implies that small and growth 

stocks are most likely to be overpriced, which is consistent with Fama and French (1996) that find the 

abnormally low returns of the smallest and lowest book-to-market portfolio. The return over month t 

(REV) tend to increase, and the past return over month t − 6 to t − 1 (MOM) also tend to increase from the 

lowest to the highest CRASHP decile, although the patterns are not monotonic. These imply that stocks 

with high CRASHP are likely to experience price rises recently prior to the portfolio formation. A possible 

interpretation is that these patterns could be evidence on the overpricing of high CRASHP stocks, if we 

assume that part of the appreciation may originate from price bubbles, not from changes in fundamental 

values. Meanwhile, the Amihud’s (2002) illiquidity (ILLIQ) shows that stocks become less liquid as the 

predicted probability of crashes increases. Share turnover (TURN) also displays a strong increasing 

pattern across deciles. This is consistent with the idea that large trading volume causes price increase 

since it affects the stock’s visibility and the subsequent demand (Gervais, Kaniel, and Mingelgrin, 2001). 

In sum, the results reported in Table 3 show clear and strong relations of CRASHP to various firm 

characteristics, and this indicates that the negative relation of CRASHP with subsequent stock returns may 

depend largely on such characteristics that determine the cross-section of stock returns. To investigate the 

role of the characteristics on the effect of crash probability, we report in Table 4 risk-adjusted returns on 

CRASHP-sorted portfolios after controlling for each of the characteristics. The control variables are the 

same as reported in Table 3, with two exceptions. They are residual institutional ownership (RIO) and 

residual analyst coverage (RCOVER), to replace institutional ownership (IO) and analyst coverage 

(COVER), respectively, defined as the residuals of the logit of IO or COVER from the cross-sectional 

regression on SIZE and squared SIZE, following Nagel (2005). 
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Specifically, we first sort stocks based on a control characteristic into quintile at the end of each 

month t, and then within each quintile, we sort stocks based on CRASHP into quintile portfolios. Monthly 

value-weighted returns on each intersection of the two sorts realized in month t + 2 are calculated, and the 

returns on each CRASHP quintile averaged across the control quintiles are reported, after adjusted for the 

Fama-French three risk factors. Table 4 shows that controlling for various characteristics excluding FAILP 

does not alter the previous finding of the crash probability effect. In particular, the risk-adjusted returns 

decrease from the lowest to the highest CRASHP quintile, with a sharp drop to −0.34% per month in 

quintile 5, after controlling for JACKPOTP. The zero-cost portfolio buying the highest and selling the 

lowest CRASHP quintile yields −0.50% (t-statistic = −4.24) per month. In spite of the high correlation 

between the two variables and the jackpot effect documented in CKX, this evidence shows the cross-

sectional return predictability of CRASHP is distinguished from the jackpot effect. When controlling for 

FAILP, however, the decreasing pattern across quintile weakens, which leads to the insignificant return 

difference of −0.22% (t-statistic = −1.27) between the highest and the lowest CRASHP portfolios. This 

result raises a doubt that the effect of CRASHP may be completely eliminated by the failure probability 

puzzle. We address this issue and provide evidence against this argument in Section 5. 

For the other fifteen characteristics, the risk-adjusted returns on the zero-cost portfolios controlling for 

a characteristic range from −0.30% to −0.70% per month on average, which are somewhat reduced in 

magnitude in comparison with the result in Table 2 but still statistically significant. For example, the zero-

cost portfolio buying the highest and selling the lowest CRASHP quintile earns −0.30% (t-statistic = 

−2.51) when controlling for IVOL, −0.34% (t-statistic = −2.81) when controlling for MAX, −0.36% (t-

statistic = −2.16) when controlling for DISP, −0.70% (t-statistic = −5.33) when controlling for SIZE, 

−0.44% (t-statistic = −2.80) when controlling for BM, and −0.52% (t-statistic = −3.12) when controlling 

for REV. In particular, controlling for the variables whose negative cross-sectional relation to stock 

returns may result in seeming return predictability of CRASHP does not attenuate the cross-sectional 

pattern of the CRASHP-sorted portfolios. 
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3.3 Firm-level cross-sectional regressions 

In the previous section, we show that the relation between the crash probability and stock returns is 

robust to controlling for each of the various firm characteristics closely associated with the cross-section 

of both crash probability and stock returns. In this section, we examine whether the effect of the crash 

probability remains robust even after controlling for the characteristics simultaneously, through firm-level 

regression analyses. Table 5 reports the Fama and MacBeth (1973) estimates for the cross-sectional 

regression coefficients of stock returns in month t on subsets of the firm characteristics in month t − 1. 

Each row of Table 5 represents a different specification of the cross-sectional regression. 

The first and second rows present the results of the cross-sectional regressions on CRASHP, with and 

without control characteristics. They confirm the negative and significant relation between CRASHP and 

future stock returns, which does not diminish by including a set of control variables such as BETA, SIZE, 

BM, REV, MOM, ILLIQ, and TURN. The average slope coefficient on CRASHP in the second row is 

−6.82 with a t-statistic of −6.32. Multiplying the spread in the mean CRASHP between decile 1 and decile 

10, reported in Table 3, by the average slope yields a monthly premium of 1.20%, which is substantially 

larger in magnitude than the return differences reported in Table 2. 

To compare the cross-sectional return predictability of CRASHP to that of other similar characteristics 

given the common control variables, each of JACKPOTP, FAILP, IVOL, ISKEW, MAX, MIN, and DISP is 

included in turn in the cross-sectional regressions. For JACKPOTP, the third and fourth rows confirm the 

finding of CKX that stocks with high JACKPOTP earn lower returns subsequently. When included with 

CRASHP together, however, the coefficient on JACKPOTP turns out to be positive, while the negative 

coefficient on CRASHP is not affected. After controlling for the common variables, JACKPOTP even 

loses its predictability for stock returns, but the coefficient on CRASHP is close to that in the second row. 

This indicates that the jackpot effect documented by CKX seems to be subsumed by CRASHP, although 

the two probabilities share very similar features. We complement this evidence later in Section 5. 

The next four rows compare the cross-sectional predictability of CRASHP and FAILP. In Table 4, we 

find that the CRASHP-sorted portfolios do not yield a significant return difference after controlling for 
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FAILP. In contrast, the predictability of CRASHP does not disappear when FAILP is included as well in 

the firm-level regression, though the coefficient is slightly reduced. This suggests that CRASHP contains 

information for future stock returns differentiated from the one contained in FAILP, despite the high 

correlation between the two variables. Meanwhile, the results about IVOL are shown subsequently in the 

following rows. Both CRASHP and IVOL retain their predictability for future returns after controlling for 

each other, but the coefficients on both variables become smaller in magnitude. 

We also consider idiosyncratic skewness (ISKEW) as a variable related to extreme payoffs of stocks. 

Nevertheless stocks with high CRASHP tend to have high ISKEW, the negative relation between CRASHP 

and future returns is not affected by ISKEW in our analysis. In addition, we compare the effect of 

CRASHP with the effects of MAX and MIN following Bali et al. (2011). When the common firm 

characteristics are not controlled, MAX predicts negatively stock returns for both specifications with and 

without CRASHP, but the coefficients on MIN are not significant. In contrast, when the common 

characteristics are controlled, MIN becomes highly significant for both cases with and without CRASHP, 

whereas the MAX effect becomes insignificant by including CRASHP in the model. Overall, the cross-

sectional effects of MAX and MIN are not robust to model specifications. On the other hand, the negative 

coefficient on CRASHP is sustained and not influenced by MAX or MIN. Finally, the last four rows in 

Table 5 present the effect of analyst forecast dispersion (DISP). The negative CRASHP-return relation is 

not changed, though the size of the coefficient shrinks, by controlling for DISP. 

To sum up, the cross-sectional regressions in the firm-level provide strong evidence for the negative 

cross-sectional relation between the crash probability and future stock returns. The return predictability of 

CRASHP is maintained even after controlling simultaneously for various related characteristics that also 

predicts the cross-section of stock returns. From both of the portfolio-level and the firm-level evidence, 

we confirm that the cross-sectional effect of the crash probability is accounted for by neither various firm 

characteristics nor risk factors in the literature. 
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4. Probability of Price Crashes and Sources of Overpricing  

 

4.1 Crash probability effects and limits-to-arbitrage 

Our findings in Section 3 imply that low average returns on stocks with high crash probability cannot 

be explained by the efficient markets view, which states that any mispricing cannot persist because 

rational arbitrageurs quickly trade against mispricing to eliminate deviations from fundamental values, 

although some irrational agents cause mispricing in the market. Instead, the cross-sectional return 

predictability of crash probability is consistent with theories that allow for limits-to-arbitrage. Therefore, 

in this section we investigate whether the overpricing of stocks with high crash probability is stronger as 

limits-to-arbitrage are higher. We use five variables as measures of limits-to-arbitrage: firm size (SIZE), 

price per share (PRC), illiquidity (ILLIQ), analyst coverage (COVER), and institutional ownership (IO). 

The first three variables are known to be related to trading costs, lower analyst coverage indicates higher 

information uncertainty, and lower institutional ownership indicates lower investor sophistication and 

higher constraints on short-sales (Bhardwaj and Brooks, 1992; Hong, Lim, and Stein, 2000; Nagel, 2005; 

Kumar and Lee, 2006; Zhang, 2006; Fama and French, 2008). Following CHS and CKX, we classify 

sample stocks as high and low limits-to-arbitrage subgroups for each of the five variables each month, 

and then within each subgroup, we construct quintile portfolios sorted by CRASHP. Monthly value-

weighted portfolio returns on each quintile for each subgroup are measured two months later after the 

portfolio formation. 

When we classify stocks based on the limits-to-arbitrage variables other than SIZE, we control for 

firm size to disentangle the separate effect of other variables from that of firm size. Specifically, for the 

SIZE subgroups, we sort stocks into tercile based on SIZE, and classify the smallest and the largest 

terciles as ‘small’ and ‘big’ subgroups, respectively. For each of the other four variables, we first sort 

stocks into tercile based on SIZE, and then within each size tercile, we sort stocks into tercile based on the 

limits-to-arbitrage variable of interest. Then, stocks included in the lowest PRC (ILLIQ, COVER, IO) 

terciles within each size tercile are classified as ‘low price (liquid, low analyst coverage, low institutional 
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ownership)’ subgroup, and stocks included in the highest PRC (ILLIQ, COVER, IO) terciles within each 

size tercile are classified as ‘high price (illiquid, high analyst coverage, high institutional ownership)’ 

subgroup.  

Table 6 presents returns on the CRASHP-sorted portfolios for different subgroups classified by the 

limits-to-arbitrage variables. Panel A shows the zero-cost portfolio returns buying the highest and selling 

the lowest CRASHP quintile for each subgroup. For firm size, although the average return on the zero-

cost portfolio is negative for both small and big groups, it is statistically significant only for small stocks. 

For example, the mean monthly returns and three-factor alphas are −0.75% (t-statistic = −2.73) and −1.01% 

(t-statistic = −5.27) per month for small firms and −0.16% (t-statistic = −0.55) and −0.21% (t-statistic = 

−1.26) per month for large firms. This indicates that the effect of crash probability is clearly observed in 

small firms but not in large firms. When we classify stocks by price per share or liquidity, we find very 

similar results that the effect of crash probability is strong in low-priced and illiquid stocks, but not in 

high-priced and liquid stocks. These results imply that the negative cross-sectional relation between 

CRASHP and stock returns arises from mispricing and delayed arbitrage. 

For the next two limits-to-arbitrage variables, the difference in the zero-cost portfolio returns between 

the high and low limits-to-arbitrage groups is less clear. For analyst coverage, the zero-cost portfolio 

return is negative and statistically significant for high coverage firms as well when controlling for the 

Fama-French three factors, and it becomes insignificant after controlling for the momentum factor 

additionally. Nevertheless, the zero-cost portfolio earns more negative returns on average in low coverage 

firms than in high coverage firms, which is consistent with the prediction of the standard theories on 

limits-to-arbitrage. The most interesting patterns are observed for subgroups classified by institutional 

ownership. For high institutional ownership stocks, the mean return on the zero-cost portfolio is −0.39% 

per month, which is lower than the mean return for low institutional ownership stocks. Although the 

average return becomes insignificant and less negative than that in low institutional ownership stocks 

when adjusted by the four-factor model, this seems inconsistent with the previous studies which 
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document that various cross-sectional anomalies are concentrated among stocks with low institutional 

ownership (Nagel, 2005; CHS, 2008; CKX, 2014; Stambaugh et al., 2015). 

To look into the relation between the effect of crash probability and limits-to-arbitrage closely, we 

also show returns on the highest and the lowest CRASHP quintiles for different subgroups classified by 

the limits-to-arbitrage variables in Panels B and C of Table 6, respectively. Focusing on the highest 

CRASHP quintile shown in Panel B, the average raw and risk-adjusted returns on the highest CRASHP 

quintile are clearly lower in stocks with high limits-to-arbitrage than in stocks with low limits-to-arbitrage, 

when limits-to-arbitrage are measured by firm size or price per share. For subgroups divided by liquidity 

and analyst coverage, the three- and four-factor alphas are more negative and significant in illiquid and 

low coverage stocks than in liquid and high coverage stocks. These findings obviously support the view 

that low average returns on stocks with high crash probability result from delayed arbitrage against 

overpricing of those stocks. In contrast, we cannot find evidence that overpricing of high CRASHP stocks 

is prevalent among stocks with lower institutional ownership. Surprisingly, the three-factor alpha on the 

highest CRASHP quintile is lower for high institutional ownership firms than for low institutional 

ownership firms, and the four-factor alpha is nearly the same for both groups but significantly different 

from zero for only high institutional ownership firms. This result is not consistent evidently with the 

literature which argues that overpricing is persistent among stocks with low institutional ownership but 

not present among stocks with high institutional ownership. 

The literature predicts that overpricing is inversely related to institutional ownership for the following 

two reasons. First, it is more difficult to arbitrage away mispricing as a lower proportion of shares is 

owned by institutions, since individuals are likely to be unsophisticated, noise traders and cause prices to 

deviate from fundamental values, and this noise trader risk deters rational arbitrageurs from exploiting 

mispricing (DeLong et al., 1990a). Second, since the main suppliers of stock loans to short sellers are 

institutional investors, stocks with lower institutional ownership are more costly to sell short (D’Avolio, 

2002; Nagel, 2005). This prevents overpricing of stocks owned mainly by individuals from being 

eliminated readily. The common premise of these two reasons is that sophisticated, professional investors 
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act as rational arbitrageurs unexceptionally, which means that they always trade against mispricing unless 

arbitrage is restricted by frictions in financial markets. This premise leads to the conclusion that 

overpricing should be less persistent among stocks held mainly by institutions because institutions must 

take a short position in overpriced stocks whenever they become aware of the overvaluation. However, 

our findings in Table 6 cannot be explained by this line of literature. 

An alternative explanation on our empirical results can be found in theories that view sophisticated 

investors as rational speculators. In DeLong et al. (1990b), rational traders may buy and bid up the prices 

above fundamental values, because they anticipate that positive feedback traders will buy the securities at 

even higher prices in the next period. In Abreu and Brunnermeier (2002, 2003), since a price bubble 

bursts only if arbitrageurs are able to coordinate their selling strategies due to capital constraints, rational 

investors, who know that the asset is overvalued but other arbitrageurs are not likely to trade against the 

bubble yet, maximize their profits by riding the bubble. These theories consistently imply that trading 

against mispricing is not always optimal for rational investors, and moreover, they even contribute to 

price movements away from fundamentals. We argue that these theories predict that overpricing, or a 

price bubble, is not necessarily related to institutional ownership, which is differentiated from the 

prediction of the standard literature on limits-to-arbitrage. It is because sophisticated traders may not sell 

short overpriced stocks even though they can, but not only that, they may even ride the bubble, hence 

overpricing of stocks owned mainly by institutions may not be arbitraged away for a while. Therefore, our 

findings in this section are more consistent with the rational speculation view than with the standard 

limited arbitrage view.  

 

4.2 Crash probability effects across different sub-periods 

In the previous section, we find evidence that overpricing of stocks with high crash probability are 

less likely to be eliminated when limits-to-arbitrage are higher in general, but that it still persists even if 

the stocks are owned largely by institutions. This evidence is definitely inconsistent with the standard 

literature on limits-to-arbitrage which assumes that sophisticated traders always trade against mispricing 
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unless the arbitrage trades are impeded. Alternatively, this evidence appears to be consistent with the 

literature on rational speculation. The rational speculation view further suggests that overpricing of high 

crash probability stocks may be driven partly by rational speculators, not entirely by behavioral, 

sentiment-driven investors, whereas the standard limited arbitrage view predicts that price deviation from 

fundamentals is driven solely by noise traders. 

In this section, we follow SYY to provide further evidence. SYY document that various cross-

sectional anomalies are stronger following high investor sentiment periods, since the stocks in the short-

leg of each anomaly-based strategy, relatively overpriced compared to the stocks in the long-leg, are more 

overpriced when sentiment is high.8 Their findings indicate that the broad set of anomalies examined 

reflect sentiment-driven overpricing, at least partially. To investigate whether overpricing of high crash 

probability stocks is associated with variations in market-wide sentiment, we use the monthly market-

wide sentiment index constructed by Baker and Wurgler (2006) obtained from Jeffrey Wurgler’s website.9 

Specifically, we classify each month during the period January 1972 to October 2015 as a high sentiment 

period if the sentiment index in the previous month is above the median value over the sample period and 

as a low sentiment period otherwise.10 We then calculate average value-weighted returns on decile 

portfolios sorted by CRASHP separately for the high and low sentiment periods. We report the average 

returns adjusted by the Fama-French three factor model following each period in Panel A of Table 7. 

During the months following high investor sentiment, the long-short strategy that goes long the lowest 

CRASHP declie and short the highest CRASHP decile yields 1.01% (t-statistic = 3.37) per month on 

average when adjusted for the three risk factors. Moreover, the profit comes from considerably low 

returns on the short-leg, the highest CRASHP decile, of −0.82% (t-statistic = −2.98). On the other hand, 

the similar pattern is also observed during the months following low investor sentiment, although the 

slope of decreasing returns across deciles is substantially reduced. During low sentiment periods, the 
                                           
8 In their work, the highest-performing decile of each anomaly is called the long-leg, and the lowest-performing 
decile is called the short-leg. 
9 The website address is http://people.stern.nyu.edu/jwurgler/. We use the data updated March 31, 2016. 
10 Since the monthly series of the sentiment index ends September 2015, the sample period is restricted. 
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average return on the long-short strategy is 0.57% (t-statistic = 2.07) per month, much smaller than the 

average return during high sentiment periods but still statistically significant. As a result, the difference of 

the long-short strategy returns between high and low sentiment periods is not different from zero 

statistically. This result is not consistent with SYY. Also, the insignificant difference in returns on the 

highest CRASHP decile between the two periods shows why our result is different from SYY. The stocks 

in the highest CRASHP decile are more overpriced during high sentiment periods, but they are also 

overpriced during low sentiment periods. This finding suggests that, nevertheless sentiment-driven 

overpricing could be a partial explanation for the cross-sectional return predictability of CRASHP, 

overpricing of high CRASHP stocks may also be driven substantially by other factors as well. 

To examine whether overpricing of high CRASHP stocks is influenced by variations in economic 

states but not by market-wide sentiment, we further classify each month into two sub-periods based on 

each of alternative state indicators. We choose three state variables, the NBER recession indicator, the 

market excess return defined as the CRSP value-weighted return in excess of one-month T-bill rate, and 

the liquidity innovation of Pastor and Stambaugh (2003). The average risk-adjusted returns on the 

CRASHP-sorted decile portfolios following expansion and recession periods, up and down market periods, 

and high and low liquidity periods are reported in Panels B, C, and D of Table 7, respectively. In short, the 

long-short strategy based on CRASHP earns highly significant abnormal returns for any sub-periods, with 

only one exception of low liquidity periods in which the long-short return is only marginally significant. 

Consequently, there is no significant difference of the long-short portfolio returns across states no matter 

what state variables are used. When focusing on the highest CRASHP decile, we cannot find evidence that 

overpricing of the highest CRASHP decile is pronounced in one particular state. On the one hand, these 

findings show that the negative cross-sectional relation between CRASHP and stock returns is not driven 

by hedging demand against changes in economic states, nor by investor sentiment. On the other hand, the 

results in Table 7 show that overpricing of high CRASHP stocks we find is a very strong and robust 

phenomenon across different sub-periods. 
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Our findings are inconsistent with both the predictions based on the standard limited arbitrage theories 

and the empirical findings of SYY. Meanwhile, our analyses do not provide a direct test on the rational 

speculation view in the bubble literature. Nevertheless, the results in both the previous and this section 

seem to be more consistent with and better explained by the rational speculation view. To supplement our 

findings, we perform the same analysis for the size-controlled sub-groups classified by institutional 

ownership in the previous section. Specifically, for each of the institutional ownership subgroups 

constructed as in Table 6, we sort stocks on CRASHP into quintile portfolios and calculate monthly value-

weighted returns on each portfolio realized two months later after the portfolio formation. Table 8 

presents the average risk-adjusted returns on the lowest and the highest CRASHP quintiles and their 

difference for each subgroup, following high and low investor sentiment periods. 

For the low institutional ownership group, the stocks in the highest CRASHP quintile earn a much 

lower alpha of −0.76% (t-statistic = −2.52) than the lowest CRASHP quintile following high sentiment 

periods, while the difference between the highest and the lowest CRASHP quintiles is not significant 

following low sentiment periods. This indicates that overpricing of stocks with high CRASHP is apparent 

when investor sentiment is high but not when investor sentiment is low, if the stocks are owned mainly by 

non-institutional investors. On the contrary, for the high institutional ownership group, the highest 

CRASHP quintile yields significantly low average returns regardless of investor sentiment. As a result, the 

difference between high and low sentiment periods is not significant for both the long-short strategy that 

goes long the lowest and short the highest CRASHP quintile and the short-leg itself. This indicates that, if 

stocks are owned mainly by institutions, overpricing of high CRASHP stocks is not associated with 

variations in market-wide sentiment. 

Our findings in Table 8, integrated with those in Table 6 and Table 7, suggest an explanation that the 

cross-sectional return predictability of crash probability may be due to both sentiment-driven overpricing 

and rational speculative bubbles. For stocks largely held by individuals, overpricing of high CRASHP 

stocks is substantially driven by market-wide sentiment. This finding is very similar and consistent with 

the previous empirical studies on cross-sectional anomalies. More interesting finding is that stocks with 
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high CRASHP are overpriced even when they are largely owned by sophisticated investors, regardless of 

market-wide sentiment. This finding differentiates the crash probability effect from other various 

anomalies examined previously. Although our evidence does not rule out other alternative explanations, 

the crash probability effect appears to be explained better by the rational speculation view than by the 

standard limited arbitrage view. 

 

4.3 Crash probability effects and changes in institutional holdings 

In the previous section, we find that the low average returns on stocks with high crash probability may 

not be entirely driven by sentiment of noise traders, which seems to contradict the standard limited 

arbitrage view. We suggest an alternative explanation that overpricing of stocks with high crash 

probability may be, at least partially, driven by rational speculation of institutional investors. In this 

section, to find evidence supporting the rational speculation view, we examine changes in institutional 

holdings prior to the formation of portfolios sorted by crash probability. Following Edelen et al. (2016), 

we focus on the number of institutions holding a stock as well as the percent shares held by institutions, 

since the change in the number of institutions is more likely to track new and closed positions whereas the 

change in institutional ownership includes adjustments to ongoing positions. We also choose the six-

quarter period prior to the portfolio formation to measure changes in institutional holdings. 

Specifically, at the end of each quarter, the change in number of institutions (∆INUM) during the prior 

six quarters is scaled by the average number in the same market capitalization decile as of the beginning 

of the six-quarter period. Stocks are sorted into decile portfolios based on crash probability at the end of 

each quarter. For each decile, we calculate the time-series and cross-sectional averages of both the change 

in number of institution (∆INUM) and the change in institutional ownership (∆IO), plotted in Panel A of 

Figure 2. Both measures for changes in institutional holdings mirror very closely each other. The prior 

six-quarter changes in institutional holdings strongly increase as the crash probability becomes higher 

from decile 1 to decile 9, and they are nearly constant for decile 9 and decile 10. Although the increasing 

pattern is not monotonic for the two highest CRASHP deciles, the change in institutional holdings is 
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undeniably greater for the highest CRASHP decile than for the eight lowest CRASHP deciles. 

Interestingly, we report in Table 3 of Section 3 that stocks with higher crash probability have lower 

institutional ownership. These findings imply that, in spite of the lowest level of institutional holdings, 

stocks in the highest CRASHP decile have been bought most heavily by institutions during recent six 

quarters. 

In Panel B of Figure 2, we investigate how the level of institutional holdings for a firm changes 

around the quarter when the firm enters into the highest CRASHP decile. The number of institutions 

(INUM) is scaled by the average number in the same market capitalization decile each quarter. For firms 

entering into the highest CRASHP decile each quarter, we present average number of institutions (INUM) 

and average institutional ownership (IO) of the firms, in excess of the mean of each measure for all firms 

that have non-missing institutional holdings data that quarter, for six quarters before and after the entry 

into the highest decile. The number of institutions (INUM) increases steadily during six quarters prior to 

the entry into the highest decile, which is consistent with the result in Panel A of Figure 2. Particularly, it 

increases more rapidly during the latest two quarters. In contrast, the number of institutions stays almost 

flat after the firms enter into the highest CRASHP decile. The institutional ownership (IO) also displays 

an increasing pattern during the pre-entry period, but it peaks one quarter earlier than the entry into the 

highest decile and slows down afterward. Both measures for institutional holdings indicate that 

institutional investors show a strong propensity to buy stocks with high crash probability, relatively 

overpriced, until the stock prices arrive at the peak of the bubbles. 

The results in this section evidently support the rational speculation hypothesis as an explanation for 

the crash probability effect. Our findings indicate that stocks with higher crash probability exhibit greater 

institutional demand in the cross-section, and moreover, that institutions are net buyers for stocks close to 

but not at the peak of overvaluation yet. These imply that sophisticated institutions may drive the prices of 

stocks currently overpriced even farther away from fundamentals by rational speculation, as predicted by 

DeLong et al. (1990b) and Abreu and Brunnermeier (2002, 2003). All the results throughout Section 4 
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provide strong evidence that the underperformance of high crash probability stocks may arise, at least 

partially, from rational speculative bubbles driven by sophisticated traders.  

 

 

5. Probability of Price Crashes and Other Cross-Sectional Anomalies  

 

5.1 Crash probability effects and jackpot effects 

In Section 3 we find strong evidence that stocks with higher probability of future extreme negative 

returns earn significantly lower returns on average, while CKX document that stocks with higher 

probability of extreme positive returns do so. Moreover, we do not report but find that stocks with higher 

jackpot probability have smaller size, higher past returns in the short-term and the intermediate-term 

periods, lower liquidity, higher turnover, and lower institutional ownership, all of which are very similar 

properties with stocks with higher crash probability.11 These similarities raise the question of whether the 

cross-sectional return predictability of crash probability subsumes or is subsumed by the jackpot effect of 

CKX. We find in Section 3 that the crash probability effect is not subsumed by the jackpot effect, in that 

in both the portfolio-level and the firm-level analyses the negative cross-sectional relation between 

CRASHP and future returns is not eliminated after controlling for jackpot probability. In contrast, the 

return predictability of JACKPOTP disappears when CRASHP enters in the cross-sectional regression 

model. In this section, we provide further evidence on the relation between crash and jackpot probabilities 

by comparing the cross-sectional return predictability of the two probabilities, and discuss their similarity 

and difference. 

Table 9 shows returns on portfolios sorted by jackpot probability and how they are influenced by 

crash probability. In table 9, we report risk-adjusted returns on the JACKPOTP-sorted quintile portfolios 

after controlling for CRASHP in Panel B and the same returns on quintile portfolios sorted by 

                                           
11 One difference is that stocks with high jackpot probability have relatively higher book-to-market ratios, while 
stocks with high crash probability are growth stocks. 
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JACKPOTP alone in Panel A for comparison. As documented in CKX, we find in Panel A of Table 9 that 

the returns on the JACKPOTP-sorted portfolios clearly decrease from quintile 1 to quintile 5, with a 

particularly low return of −0.42% (t-statistic = −2.58) per month on quintile 5. However, in Panel B of 

Table 9, the decreasing pattern in portfolio returns disappears after controlling for CRASHP, thus the 

zero-cost portfolio buying the highest and selling the lowest JACKPOTP quintile yields an insignificant 

alpha of 0.07% (t-statistic = 0.77). This result is consistent with the result of the firm-level regressions in 

Table 5. We also report risk-adjusted returns on portfolios sorted first by CRASHP and then by 

JACKPOTP in Panel C of Table 9. In short, in each row classified by CRASHP, the sort on JACKPOTP 

does not produce a significant cross-sectional difference in returns. In contrast, for each column ranked by 

JACKPOTP, the highest CRASHP portfolio earns substantially low returns, which leads to a negative and 

significant return difference between the highest and the lowest CRASHP portfolios. These findings 

confirm that the return predictability of jackpot probability is completely subsumed by that of crash 

probability although the two probabilities share very similar characteristics. 

A distinctive feature of the crash probability effect is that overpricing of high CRASHP stocks is 

robust regardless of firms’ institutional ownership, as documented in Section 4. In contrast, CKX 

document that the jackpot effect is much stronger in firms with low institutional ownership. We also find 

evidence that overpricing of high CRASHP stocks is not related to variations in investor sentiment, 

particularly for stocks owned mainly by institutions, in Section 4. To investigate the association of the 

jackpot effect with variations in market-wide sentiment, we perform the same analysis following SYY on 

the JACKPOTP-sorted quintile portfolios, and report the average risk-adjusted returns following high and 

low sentiment periods in Panel D of Table 9. The result shows a clear difference from the result for the 

CRASHP-sorted portfolios reported in Table 7. During the month following high sentiment periods, the 

portfolio returns show a sharply decreasing pattern across quintiles, yielding a significant alpha of 0.96% 

(t-statistic = 4.37) on the long-short strategy that goes long the lowest and short the highest JACKPOTP 

quintile. During the month following low sentiment periods, however, the portfolio returns are relatively 

flat across quintiles, and the same long-short strategy earns nearly zero return. The difference in returns 



- 30 - 

between high and low sentiment periods clearly indicates that the jackpot effect can be attributed to 

sentiment-driven overpricing of high JACKPOTP stocks, like other eleven anomalies examined in SYY. 

On the other hand, our findings in Section 4 suggest that the crash probability effect is not completely 

driven by market-wide sentiment, and it may also be partially attributed to rational speculative bubbles 

driven by sophisticated traders. This different source of overpricing seems to enable the crash probability 

effect to subsume completely the jackpot effect. 

Finally, to compare the CRASHP- and JACKPOTP-sorted portfolios, we plot factor loadings of the 

excess returns on decile portfolios sorted by each of CRASHP or JACKPOTP on the Carhart four factors 

in Figure 3. The two sets of decile portfolios have similar patterns in MKT, SMB, and HML loadings, but 

somewhat different patterns in WML loadings. Loadings on SMB increase as both crash and jackpot 

probabilities increase, while loadings on HML decrease as both probabilities increase. In particular, the 

highest CRASHP decile loads very negatively on HML, compared to the highest JACKPOTP decile, 

indicating that it contains more of growth stocks. On the other hand, loadings on WML look decreasing 

across both of the two sets of decile portfolios, but the shape of the decreasing pattern looks different. 

Whereas the pattern is convex for the JACKPOTP-sorted portfolios, it is rather concave for the CRASHP-

sorted portfolios. As a result, WML loadings sharply drop from decile 8 to decile 10 when sorted by 

CRASHP, but they slightly increase when sorted by JACKPOTP. The large negative WML loading of the 

highest CRASHP decile is surprising because the highest CRASHP decile includes past winner stocks on 

average as reported in Table 3. Our interpretation is that stocks that have experienced price rises recently 

are likely to be near the peak of price bubbles, if the price rises do not entirely arise from changes in 

fundamentals, hence they have high probability of bursting of the bubbles. If the bubbles burst, as 

expected, after forming the portfolios, then these stocks would experience large negative returns in the 

holding periods of the portfolios. Consequently, the portfolio returns would move along with past losers, 

and this leads to a negative loading on WML. This interpretation suggests that the superior predictability 

for future returns of crash probability may stem from the ability of timing the peak of price bubbles as 

well as the ability of picking relatively overpriced stocks. 



- 31 - 

 

5.2 Crash probability effects and distress puzzle 

In this section, we discuss the difference between the cross-sectional return predictability of crash 

probability and failure probability. Our measure of crash probability and the failure probability 

constructed by CHS are similar in that both variables are the ex-ante probabilities for negative and rarely 

occurred events, and that the two events of price crashes and firms’ failure may be accompanied with each 

other. In Section 3, we find that the return difference between the highest and the lowest CRASHP 

portfolios becomes insignificant after controlling for FAILP. Also, we do not report but find that the return 

difference between the highest and the lowest FAILP portfolios is not affected by controlling for CRASHP. 

These findings bring up a concern that the negative relation between crash probability and future returns 

just mimics the distress puzzle documented in CHS that are more prevalent and fundamental. Meanwhile, 

the firm-level cross-sectional regressions show a different result that the return predictability of CRASHP 

is retained even after controlling for FAILP. Given these conflicting findings, we further investigate 

whether crash probability, compared to failure probability, contains additional information for future 

returns that makes a difference between the return predictability of the two probabilities.  

To this end, we construct new variables by orthogonalizing crash and failure probabilities to each 

other, to eliminate the shared information between the two probabilities entirely. Specifically, we regress 

CRASHP on FAILP each month in the cross-section, and refer to the residuals as residual crash 

probability (RCRASHP). Likewise, we also regress FAILP on CRASHP and refer to the residuals as 

residual failure probability (RFAILP). RCRASHP is highly correlated with CRASHP but not correlated 

with FAILP, and RFAILP is highly correlated with FAILP but not correlated with CRASHP. Then, we 

construct decile portfolios sorted on each of RCRASHP and RFAILP, respectively, at the end of month t, 

and calculate monthly value-weighted returns on each portfolio realized in month t + 2. Table 10 reports 

mean returns, CAPM alphas, Fama-French three-factor alphas, and Carhart four-factor alphas on the 

RCRASHP- and RFAILP-sorted portfolios in Panel A and Panel B, respectively. 
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Panel A of Table 10 shows that the mean returns do not show a clear pattern from decile 1 to decile 6, 

but decrease from decile 6 to decile 10, which is comparable to the pattern in the CRASHP-sorted 

portfolios reported in Table 2. The alphas on the zero-cost portfolio buying the highest and selling the 

lowest RCRASHP deciles are −1.02% (t-statistic = −3.17) for the CAPM, −0.58% (t-statistic = −2.38) for 

the three-factor model, and −0.44% (t-statistic = −2.14) per month for the four-factor model, respectively, 

all of which are statistically significant. Moreover, these significant return differences are mainly due to 

substantially low returns on the highest RCRASHP decile. On the other hand, Panel B of Table 10 shows 

that the cross-sectional relation between RFAILP and future returns is rather weak. Interestingly, the 

return difference between the highest and the lowest RFAILP deciles is not enough to reject a zero return. 

In sum, the results in Table 10 confirm that crash probability has distinct information, not contained in 

failure probability, to predict future returns, while the return predictability of failure probability becomes 

weak when orthogonalized to crash probability.  

In Figure 4, we compare loadings of the excess returns on each of the CRASHP- and FAILP-sorted 

portfolios on the Carhart four factors. Whereas loadings on MKT and SMB of the two sets of decile 

portfolios are not much different from each other, loadings on HML and WML display a significant gap 

between the CRASHP- and FAILP-sorted portfolios. Loadings on HML are close to an inverse U-shape 

across the FAILP deciles, and they are positive for all portfolios but the two extreme deciles, whose 

loadings are slightly negative but insignificant. This presents a sharp contrast to the clearly decreasing 

pattern of the CRASHP-sorted portfolios, which is consistent with that the highest FAILP decile contains 

more of value stocks compared to the highest CRASHP decile containing growth stocks.12 For loadings on 

WML, although they tend to decrease across deciles for both the CRASHP- and FAILP-sorted portfolios, 

loadings for the FAILP-sorted portfolios display an even steeper decline than those for the CRASHP-

sorted ones. Consistent with this negative relation between WML loadings and failure probability, we find, 

but do not report, that the average past returns decline sharply from the lowest to the highest FAILP decile. 

                                           
12 The 25% winsorized mean of book-to-market ratio of the highest FAILP decile is 0.830 on average, while the 
same mean of the highest CRASHP decile is 0.538, as reported in Table 3. 



- 33 - 

These findings indicate that stocks in the highest FAILP decile closely resemble momentum losers, while 

the highest CRASHP decile includes momentum winners despite its negative loading on WML, as 

discussed in Section 5.1. 

When comparing various characteristics between the two sets of decile portfolios, the most 

remarkable difference is that the average returns over different horizons from one to twelve months prior 

to the portfolio formation are associated positively with crash probability but negatively with failure 

probability, while the returns subsequent to the portfolio formation are negatively associated with both 

probabilities. To uncover a clue as to the fundamental difference of the return predictability of CRASHP 

and FAILP by focusing on the top deciles, we apply an event study in which the event is defined as the 

entry of a stock into the highest CRASHP or FAILP decile, and examine daily average abnormal returns 

around the event. Specifically, decile portfolios are constructed by sorting stocks based on each of 

CRASHP and FAILP at the end of each month, and the end-of-month day in which a stock enters into the 

highest decile is defined as the event day. Then, abnormal returns (AR) and cumulative abnormal returns 

(CAR) are calculated over the event window, comprised of 126 pre-event trading days, the event day, and 

126 post-event trading days, based on the market model estimated from the window of 126 trading days 

prior to the event window. Figure 5 presents the average AR and CAR over the event window for the 

highest CRASHP decile in Panel A, and for the highest FAILP decile in Panel B, respectively.  

We can tell at a glance that the two panels in Figure 5 look very different from each other. For the 

highest decile of CRASHP, CAR increases slowly but evidently during a horizon of d − 126 to d − 21, 

rockets during d − 21 to the event day d, and then it declines steadily during the post-event days. In 

contrast, for the highest decile of FAILP, CAR continues to decrease over the event window, more steeply 

in particular during the prior month to the event. These patterns are consistent with the previous findings 

that the highest CRASHP decile contains past winners and the highest FAILP decile contains past losers. 

Moreover, these patterns imply that the source of the return predictability may be completely different 

between the two probability measures. The continuing decline in returns of the distressed firms suggests 

that overpricing of these firms results from underreaction to bad news. On the other hand, the sudden 
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reversal of sharply increasing returns in the highest CRASHP decile, which seems far from the 

underreaction story, may be regarded as growing price bubbles followed by bursting of them. Of course, 

this study does not explain what makes stocks overvalued essentially and why those stocks are. 

Nevertheless, our findings in Figure 5 supports the interpretation that the strong cross-sectional relation 

between the crash probability and future returns may arise from both of the ability of timing the peak of 

the bubbles and the ability of picking the most overpriced stocks. 

 

5.3 Crash probability effects and various cross-sectional anomalies 

In this section, we ask whether the effect of crash probability is linked to the cross-sectional 

anomalies examined by SYY (2012, 2015). SYY (2012, 2015) examine eleven cross-sectional anomalies 

known to survive adjustments for risk exposure, and provide evidence that the eleven anomalies are at 

least partially caused by sentiment-driven overpricing. Since our finding of the return predictability of 

crash probability is also primarily due to overpricing of stocks with a high crash probability, there might 

be a concern that our finding is only a reproduction of one of numerous anomalies confirmed by the 

literature. Therefore, we investigate the role of the eleven anomalies on the cross-sectional return 

predictability of crash probability, and provide evidence that our finding is an independent phenomenon 

of those anomalies. Since two of the eleven anomaly variables, failure probability of CHS and momentum 

of Jegadeesh and Titman (1993), are examined in Section 3 and Section 5.2, we investigate in this section 

the remaining nine anomaly variables. They include Ohlson’s (1980) O-score (OSCR), net stock issues 

(NSI) of Ritter (1991), composite equity issues (CEI) of Daniel and Titman (2006), total accruals (TA) of 

Sloan (1996), net operating assets (NOA) of Hirshleifer, Hou, Teoh, and Zhang (2004), gross profitability 

(GP) of Novy-Marx (2013), asset growth (AG) of Cooper, Gullen, and Schill (2008), return on assets 

(ROA) of Fama and French (2006), and abnormal capital investment (ACI) of Titman, Wei, and Xie 

(2004). Definitions of these variables are given in Appendix. 

Table 11 presents risk-adjusted returns on the CRASHP-sorted portfolios after controlling for each of 

the nine anomaly variables. The procedure of portfolio construction is identical to that of Table 4. Overall, 
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the zero-cost portfolio buying the highest and selling the lowest CRASHP quintile yields negative three-

factor alphas for all controlling variables, six of which are statistically significant. The insignificant 

alphas are −0.17% (t-statistic = −1.58) when controlling for CEI, −0.30% (t-statistic = −1.64) when 

controlling for TA, and −0.25% (t-statistic = −1.36) when controlling for AG. For the six variables 

yielding significant results, the three-factor alphas on the zero-cost portfolios range from −0.29% to −0.58% 

per month, which is comparable to the result in Table 4. 

Table 12 presents the results of firm-level cross-sectional regressions including crash probability and 

each of the nine anomaly variables together. As in Table 5, the set of control characteristics includes BETA, 

SIZE, BM, REV, MOM, ILLIQ, and TURN. Seven out of the nine anomaly variables, excluding OSCR and 

AG, have statistically significant predictability with the consistent signs as documented by previous 

studies: positive signs for GP and ROA, and negative signs otherwise. The cross-sectional predictability 

of those anomaly variables is not influenced by the crash probability and other firm characteristics. More 

importantly, our measure of crash probability has highly significant and negative coefficients in all 

specifications considered. Compared to the results in Table 5, the magnitude of coefficients on CRASHP 

is not much affected by anomaly variables. The results in Table 12 confirm that the cross-sectional return 

predictability of crash probability is not altered by controlling for the broad set of anomaly variables 

examined by SYY, which strengthens the robustness of our findings.  

 

 

6. Conclusion 

 

Motivated by the recent study of CKX, this study investigates the cross-sectional relation between the 

predicted probability for price crashes and future stock returns, and finds strong evidence differentiated 

from other cross-sectional anomalies examined extensively in the literature. First, we find that stocks with 

high probability for price crashes earn substantially low average returns subsequently, which is not 

accounted for by various firm characteristics known as the determinants of the cross-section of stock 
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returns. Second, we find evidence that overpricing of stocks with high crash probability is not arbitraged 

away even among stocks owned largely by institutions. Moreover, the cross-sectional return predictability 

of the crash probability is not associated with variations in market-wide sentiment, particularly for stocks 

with high institutional ownership. These findings cast doubt on the role of institutional investors as 

rational arbitrageurs as assumed in the standard literature on limited arbitrage, which predicts that 

overpricing is inversely related to institutional ownership, and that mispricing is primarily driven by noise 

traders. Third, we find that stocks with higher crash probability exhibit greater institutional demand and 

institutional investors show a tendency to buy stocks close to but not at the peak of overvaluation yet. 

This evidence suggests that overpricing of high crash probability stocks may also be driven by 

sophisticated institutions, not solely by behavioral, noise traders. Finally, the cross-sectional return 

predictability of the jackpot probability documented in CKX is completely eliminated when controlling 

for the crash probability, while the crash probability effect is not altered by the jackpot probability. Also, 

we provide evidence that the crash probability effect clearly differs from a broad set of cross-sectional 

anomalies including financial distress puzzle of CHS.  

Although our evidence does not rule out other possible explanations, our distinctive findings can be 

well understood under the line of theories on rational speculation which presume that sophisticated traders 

do not always stabilize asset prices but destabilize them by riding a price bubble to maximize profits. We 

suggest that the underperformance of stocks with a high crash probability may result partially from 

rational speculative bubble driven by sophisticated traders, not entirely from sentiment-driven overpricing 

by noise traders. The different source of overpricing seems to enable the crash probability effect to 

survive after controlling for other related anomaly variables. Our evidence also suggests that the superior 

return predictability of crash probability may stem from both the ability of timing the peak of price 

bubbles and the ability of picking overpriced stocks. 
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Appendix. Definitions of Variables 

Definitions of all variables in this study are provided in alphabetical order. 

ACI: Abnormal capital investment at the end of June in year t to May in year t + 1 is defined as capital 

expenditure for year t − 1 divided by the previous three-year average of capital expenditure, minus 1. 

The capital expenditure (Compustat annual item CAPX) is scaled by sales (item SALE) for the same 

year. 

AG: Asset growth at the end of June in year t to May in year t + 1 is the annual changes for year t − 1 in 

total assets (Compustat annual item AT) divided by total assets for year t − 2. 

AGE: Firm age is the number of years since first appearance on the CRSP monthly stock file. 

BETA: Market beta is estimated from the time-series regression of daily excess returns on the market 

excess returns, defined as the CRSP value-weighted returns in excess of one-month T-bill rate, in 

each month. To avoid issues related to nonsynchronous trading, we use the lag and lead of the market 

excess return as well as the current market return. Then, market beta is defined as the sum of three 

slope coefficients on the lag, lead, and current market excess returns. We exclude stocks with less 

than 15 daily excess returns each month. 

BM: Book-to-market ratio at the end of June in year t to May in year t + 1 is the ratio of book equity for 

the end of year t − 1 to market equity at the end of December in year t − 1. The book equity is 

defined as stockholders’ equity (Compustat annual item SEQ), plus deferred taxes and investment 

tax credit (item TXDITC) if available, minus the book value of preferred stocks. The book value of 

preferred stocks is preferred stock redemption value (item PSTKRV) if available, or liquidating 

value (item PSTKL) if available, or par value (item PSTK). 

CEI: Composite equity issues at the end of June in year t to May in year t + 1 is measured as the log of the 

ratio of market equity at the end of June in year t to market equity at the end of June in year t − 5, 

minus the cumulative log return from the end of June in year t − 5 to the end of June in year t. 
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COVER: Analyst coverage is the log of one plus the number of estimates for earnings forecasts (I/B/E/S 

unadjusted file item NUMEST) for the current fiscal year (item FPI = 1). 

CRASHP: Crash probability at the end of month t is the probability for log returns less than −70% over 

month t + 1 to month t + 12, predicted out-of-sample from the generalized logit model specified in 

Equation (1). 

DISP: Analyst forecast dispersion of Diether, Malloy, and Scherbina (2002) is the standard deviation of 

earnings forecasts (I/B/E/S unadjusted file item STDEV) divided by the absolute value of the mean 

of earnings forecasts (item MEANEST) for the current fiscal year (item FPI = 1). 

DTURN: Detrended turnover is the six-month average of monthly share turnover subtracted by the prior 

18-month average. 

FAILP: Following Campbell, Hilscher, and Szilagyi (2008), failure probability is defined by 
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and ϕ = 2−1/3. NIMTA is net income (Compustat quarterly item NIQ) divided by the sum of market 

equity (price per share times the number of outstanding shares) and total liabilities (item LTQ), 

EXRET is the firm’s log return in excess of the log return on S&P 500 index, TLMTA is total 

liabilities divided by the sum of market equity and total liabilities, SIGMA is the annualized three-

month rolling sample standard deviation of daily returns, RSIZE is the log ratio of market equity to 

the total market value of S&P 500 index, CASHMTA is cash and short term investments (item CHEQ) 

divided by the sum of market equity and total liabilities, MB is the market-to-book equity ratio, and 
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PRICE is the log of price per share. We winsorize explanatory variables at their 5th and 95th 

percentiles of the pooled distribution of all firm-month observations.  

GP: Gross profitability at the end of June in year t to May in year t + 1 is measured as total revenue 

(Compustat annual item REVT) minus cost of goods sold (item COGS) for year t − 1, scaled by total 

assets (item AT). 

ILLIQ: Illiquidity at the end of month t denotes the price impact measure proposed by Amihud (2002), 

defined as the average of the ratio of the absolute daily return to dollar trading volume in month t. 

IO: Institutional ownership is the fraction of shares owned by institutions from Thomson Reuters 

Institutional (13F) Holdings database. 

ISKEW: Idiosyncratic skewness at the end of month t is defined as the skewness of the residuals from the 

time-series regression of daily excess returns over month t − 5 to month t on the Fama-French three 

factors. We exclude stocks with less than 50 daily excess returns during the six-month period. 

IVOL: Idiosyncratic volatility at the end of month t is defined as the standard deviation of the residuals 

from the time-series regression of daily excess returns in month t on the Fama-French three factors. 

We exclude stocks with less than 15 daily excess returns each month. 

JACKPOTP: Jackpot probability at the end of month t is the probability for log returns greater than 70% 

over month t + 1 to month t + 12, predicted out-of-sample from the generalized logit model specified 

in Equation (1). 

MAX: defined as the maximum daily return within month t. We exclude stocks with less than 15 daily 

returns each month. 

MIN: defined as the negative of the minimum daily return within month t. We exclude stocks with less 

than 15 daily returns each month. 

MOM: Momentum, measured at the end of month t, is defined as the cumulative return over month t − 6 

to month t − 1. 

NOA: Net operating assets at the end of June in year t to May in year t + 1 is defined as operating assets 

minus operating liabilities for year t − 1, scaled by total assets (Compustat annual item AT) for year t 
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− 2. Operating assets is total assets minus cash and short-term investments (item CHE). Operating 

liabilities is total assets minus debt in current liabilities (item DLC), minus long-term debt (item 

DLTT), minus minority interest (item MIB), minus preferred stock (item PSTK), and minus common 

equity (item CEQ). 

NSI: Net stock issues at the end of June in year t to May in year t + 1 is measured as the log of the ratio of 

the split-adjusted shares outstanding for the end of year t − 1 to the split-adjusted shares outstanding 

for the end of year t − 2, where the split-adjusted shares outstanding is common shares outstanding 

(Compustat annual item CSHO) times the adjustment factor (item AJEX). 

OSCR: Following Ohlson (1980), O-score is defined by 
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in which ASIZE is the log of total assets (Compustat annual item AT) divided by the GDP deflator, 

TLTA is the ratio of total liabilities (item LT) to total assets, WCTA is the ratio of working capital 

(item WCAP) to total assets, CLCA is the ratio of current liabilities (item LCT) to current assets (item 

ACT), OENEG is 1 if total liabilities exceeds total assets and 0 otherwise, NITA is the ratio of net 

income (item NI) to total assets, FUTL is funds from operations (item FOPT) divided by total 

liabilities, INTWO is 1 if net income is negative for the last two years and 0 otherwise, CHIN is the 

difference in net income between the current and previous years divided by the sum of the absolute 

values of the two values. 

RCOVER: Residual analyst coverage is defined as the residuals from the cross-sectional regression of 

analyst coverage (COVER) on firm size (SIZE) and squared firm size (SIZE2) for each month. 

RCRASHP: Residual crash probability is defined as the residuals from the cross-sectional regression of 

the predicted probability of price crashes (CRASHP) on failure probability (FAILP) for each month. 

RET12: Measured for each stock at the end of month t as the log return on the stock from month t − 11 to 

month t. 

REV: Short-term reversal represents the return on a stock over month t. 
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RFAILP: Residual failure probability is defined as the residuals from the cross-sectional regression of 

failure probability (FAILP) on the predicted probability of price crashes (CRASHP) for each month. 

RIO: Residual institutional ownership is defined as the residuals from the cross-sectional regression of the 

logit of institutional ownership (IO) on firm size (SIZE) and squared firm size (SIZE2) for each 

month, following Nagel (2005). If values of IO are below 0.0001 or above 0.9999, they are replaced 

with 0.0001 or 0.9999, respectively.  

ROA: Return on assets at the end of month t is defined as income before extraordinary items (Compustat 

item IBQ) for the most recently announced quarter, divided by one-quarter-lagged total assets (item 

ATQ). 

SALESG: Sales growth at the end of June in year t to May in year t + 1 is the log difference between sales 

(Compustat annual item SALE) for the end of year t − 1 and sales for the end of year t − 2. 

SIZE: Firm size is defined as the log of price per share times the number of shares outstanding. 

TA: Total accruals at the end of June in year t to May in year t + 1 is defined as the annual changes for 

year t − 1 in noncash working capital minus depreciation (Compustat annual item DP), scaled by the 

last two-year average of total assets (item AT). The noncash working capital is noncash current assets, 

measured as current assets (item ACT) minus cash and short-term investments (item CHE), minus 

current liabilities (item LCT) less debt in current liabilities (item DLC) and income taxes payable 

(item TXP). 

TANG: Tangible assets at the end of June in year t to May in year t + 1 is property, plant, and equipment 

(Compustat annual item PPEGT) divided by total assets (item AT) for the end of year t − 1. 

TSKEW: Total skewness at the end of month t is calculated using daily log returns over month t − 5 to 

month t. We exclude stocks with less than 50 daily log returns during the six-month period. 

TURN: Turnover is the ratio of monthly trading volume to the number of shares outstanding. 

TVOL: Total volatility at the end of month t is the standard deviation of daily log returns over month t − 5 

to month t. We exclude stocks with less than 50 daily log returns during the six-month period. 
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Table 1. Parameter estimates of the prediction model for extreme stock returns 

This table reports estimated parameters of the generalized logit model specified in Equation (1) to predict extreme 
stock returns. A crash is defined as log returns less than −70% over the next 12 months, and a jackpot is defined as 
log returns greater than 70% over the next 12 months. RET12 is the log return over the past 12 months, and TVOL 
and TSKEW are the standard deviation and skewness of daily log returns over the past six months. SIZE is the log of 
market capitalization, DTURN is the detrended turnover defined by the six-month average of monthly share turnover 
minus the prior 18-month average, and AGE is the number of years since first appearance on the CRSP monthly 
stock file. TANG is tangible assets divided by total assets, and SALESG is the sales growth over the prior year. All 
explanatory variables are constructed to be observable at the beginning of the 12-month period over which a crash or 
jackpot is measured. The sample includes all available firm-month observations during the period June 1952 to 
December 2015. 
 
 Crash Jackpot  

Variable Coefficient z-statistic 
% change 

in odds ratio 
for a σ change 

Coefficient z-statistic 
% change 

in odds ratio 
for a σ change 

R2 

Intercept -3.974  -139.196   -2.116  -65.002   0.128  

RET12 0.040  5.880  1.70 %  0.042  5.047  1.80 %   

TVOL 44.107  198.846  85.50 %  34.350  130.569  61.80 %   

TSKEW 0.039  12.934  4.30 %  0.031  8.620  3.40 %   

SIZE 0.044  21.218  9.00 %  -0.131  -52.621  -22.40 %   

DTURN -0.003  -1.301  -0.30 %  -0.047  -14.580  -5.40 %   

AGE -0.028  -77.500  -36.00 %  -0.014  -38.955  -20.70 %   

TANG -0.484  -44.295  -17.10 %  -0.199  -16.996  -7.40 %   

SALESG 0.357  46.670  13.10 %  0.178  17.598  6.30 %   
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Table 2. Returns on portfolios sorted by out-of-sample predicted probability of price crashes 

This table reports returns on decile portfolios sorted on the predicted probability of price crashes. At the end of each 
month t, decile portfolios are constructed by sorting stocks based on crash probability (CRASHP). Monthly portfolio 
returns on each decile realized in month t + 2 are calculated, and mean returns, CAPM alphas, Fama-French three-
factor alphas, and Carhart four-factor alphas are reported. The column “1” is the portfolio of the lowest CRASHP 
decile, the column “10” is the portfolio of the highest CRASHP decile, and the column “10-1” indicates the zero-cost 
portfolio buying the highest and selling the lowest CRASHP decile. Panel A reports value-weighted returns, and 
Panel B reports equal-weighted returns. The numbers in parentheses are t-statistics adjusted using Newey-West 
(1987) standard errors with 12 lags. The sample period is January 1972 to December 2015. 
 
 1 2 3 4 5 6 7 8 9 10 10-1 

Panel A: Value-weighted portfolios sorted on CRASHP 
Mean 0.99 0.84 0.94 1.01 1.05 1.03 0.91 0.97 0.76 0.36 -0.64 
 (5.85) (4.45) (4.56) (4.27) (4.56) (4.38) (3.35) (2.90) (2.29) (0.78) (-1.68) 
CAPM α 0.20 -0.02 0.05 0.06 0.08 0.01 -0.15 -0.19 -0.42 -0.96 -1.16 
 (3.15) (-0.34) (0.60) (0.88) (1.11) (0.13) (-1.76) (-1.18) (-2.34) (-3.44) (-3.57) 
Three-factor α 0.15 -0.08 0.02 0.05 0.13 0.10 -0.02 0.01 -0.23 -0.64 -0.79 
 (2.96) (-1.38) (0.32) (0.74) (1.90) (1.05) (-0.25) (0.12) (-1.95) (-3.29) (-3.60) 
Four-factor α 0.08 -0.06 -0.02 -0.01 0.10 0.15 0.01 0.05 -0.09 -0.41 -0.50 
 (1.65) (-1.08) (-0.35) (-0.14) (1.40) (1.59) (0.16) (0.42) (-0.75) (-2.40) (-2.55) 
Panel B: Equal-weighted portfolios sorted on CRASHP 
Mean 1.13 1.16 1.23 1.30 1.34 1.28 1.28 1.17 0.94 0.40 -0.73 
 (6.69) (6.17) (6.11) (5.92) (5.68) (5.35) (4.83) (4.00) (2.83) (1.04) (-2.36) 
CAPM α 0.33 0.32 0.36 0.39 0.39 0.30 0.25 0.09 -0.21 -0.86 -1.19 
 (3.40) (2.62) (2.77) (2.86) (2.78) (2.08) (1.58) (0.53) (-1.16) (-3.70) (-4.41) 
Three-factor α 0.13 0.09 0.14 0.17 0.19 0.12 0.12 0.00 -0.23 -0.78 -0.91 
 (1.91) (1.30) (1.97) (2.71) (2.79) (1.82) (1.68) (0.06) (-2.90) (-6.41) (-6.05) 
Four-factor α 0.11 0.13 0.17 0.21 0.22 0.16 0.19 0.08 -0.09 -0.53 -0.64 
 (1.82) (2.15) (2.83) (4.11) (3.62) (2.58) (2.48) (1.20) (-1.22) (-4.65) (-4.46) 
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Table 3. Characteristics of portfolios sorted by crash probability 

This table reports various firm characteristics for each decile portfolio sorted on the predicted probability of price 
crashes. At the end of each month t, decile portfolios are constructed by sorting stocks based on crash probability 
(CRASHP). Then, we calculate 25% winsorized means of various characteristics for each decile in each month, and 
then report time-series averages of them. The firm characteristic variables are crash probability (CRASHP), jackpot 
probability (JACKPOTP), failure probability (FAILP), idiosyncratic volatility (IVOL), idiosyncratic skewness 
(ISKEW), maximum daily return in month t (MAX), minimum daily return in month t (MIN), price per share (PRC), 
institutional ownership (IO), analyst coverage (COVER), analyst forecast dispersion (DISP), market beta (BETA), 
log of market capitalization (SIZE), book-to-market ratio (BM), return in month t (REV), return over month t − 6 to t 
− 1 (MOM), illiquidity (ILLIQ), and share turnover (TURN). The sample period is January 1972 to December 2015 
for all variables but FAILP that begins August 1972, IO that begins April 1980, and COVER and DISP that begin 
January 1976. 
 

 1 2 3 4 5 6 7 8 9 10 
CRASHP 0.006  0.014  0.021  0.029  0.038  0.048  0.060  0.078  0.106  0.182  
JACKPOTP 0.010  0.018  0.023  0.028  0.032  0.038  0.043  0.051  0.061  0.080  
FAILP (%) 0.031  0.031  0.032  0.033  0.035  0.037  0.040  0.045  0.053  0.086  
IVOL 1.131  1.330  1.495  1.637  1.785  1.953  2.158  2.414  2.769  3.492  
ISKEW 0.187  0.254  0.301  0.321  0.351  0.379  0.402  0.428  0.471  0.598  
MAX 2.972  3.472  3.862  4.218  4.603  5.034  5.580  6.259  7.210  9.187  
MIN 2.694  3.090  3.410  3.684  3.975  4.315  4.728  5.244  5.941  7.259  
PRC 33.137  27.256  24.504  22.696  21.557  19.729  17.873  16.291  14.349  11.880  
IO 0.517  0.505  0.507  0.510  0.511  0.497  0.478  0.457  0.423  0.357  
COVER 2.474  2.126  1.987  1.914  1.877  1.835  1.787  1.734  1.701  1.633  
DISP 0.043  0.048  0.051  0.050  0.050  0.054  0.058  0.065  0.079  0.114  
BETA 0.669  0.691  0.713  0.757  0.816  0.878  0.966  1.072  1.200  1.358  
SIZE 7.204  6.258  5.880  5.648  5.536  5.384  5.254  5.114  4.949  4.776  
BM 0.897  0.850  0.817  0.802  0.751  0.723  0.691  0.652  0.602  0.538  
REV 0.925  0.878  0.920  0.983  1.111  1.145  1.243  1.299  1.348  1.776  
MOM 6.380  6.009  6.712  7.065  7.843  8.300  8.691  8.928  8.315  7.533  
ILLIQ 0.032  0.077  0.140  0.216  0.258  0.293  0.319  0.372  0.419  0.514  
TURN 0.062  0.058  0.061  0.067  0.075  0.083  0.093  0.107  0.124  0.166  
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Table 4. Returns on portfolios sorted by crash probability after controlling for other characteristics 
This table reports risk-adjusted returns on quintile portfolios sorted on the predicted probability of price crashes after 
controlling for each of various firm characteristics. At the end of each month t, stocks are sorted based on a control 
variable into quintile, and then within each quintile, they are sorted into quintile portfolios based on crash 
probability (CRASHP). Monthly value-weighted portfolio returns on each intersection of the two sorts realized in 
month t + 2 are calculated, and returns on each of the controlled CRASHP quintiles are defined as average returns 
across the control quintiles. The table shows portfolio returns adjusted for risk factors of the Fama-French three-
factor model. The control variables include jackpot probability (JACKPOTP), failure probability (FAILP), 
idiosyncratic volatility (IVOL), idiosyncratic skewness (ISKEW), maximum daily return in month t (MAX), 
minimum daily return in month t (MIN), price per share (PRC), residual institutional ownership (RIO), residual 
analyst coverage (RCOVER), analyst forecast dispersion (DISP), market beta (BETA), log of market capitalization 
(SIZE), book-to-market ratio (BM), return in month t (REV), return over month t − 6 to t − 1 (MOM), illiquidity 
(ILLIQ), and share turnover (TURN). The numbers in parentheses are t-statistics adjusted using Newey-West (1987) 
standard errors with 12 lags. The sample period is January 1972 to December 2015 for all control variables but 
FAILP that begins October 1972, RIO that begins June 1980, and RCOVER and DISP that begin March 1976. 
 
 Ranking on CRASHP  

 1 2 3 4 5 5-1 

Controlling for:       
JACKPOTP 0.16 0.09 0.02 -0.09 -0.34 -0.50 
 (2.04) (1.86) (0.43) (-1.52) (-3.55) (-4.24) 
FAILP -0.07 -0.14 -0.23 -0.19 -0.29 -0.22 
 (-1.13) (-1.93) (-2.64) (-2.26) (-1.99) (-1.27) 
IVOL 0.01 -0.13 -0.09 -0.07 -0.29 -0.30 
 (0.16) (-2.06) (-1.48) (-0.84) (-2.84) (-2.51) 
ISKEW 0.06 0.10 0.11 0.01 -0.47 -0.53 
 (1.33) (2.02) (2.00) (0.07) (-3.23) (-3.06) 
MAX 0.06 -0.08 0.06 -0.09 -0.29 -0.34 
 (1.11) (-1.83) (0.94) (-1.25) (-2.65) (-2.81) 
MIN 0.01 0.00 -0.06 -0.11 -0.30 -0.31 
 (0.20) (-0.04) (-1.14) (-1.41) (-2.89) (-2.59) 
PRC -0.07 -0.06 -0.10 -0.27 -0.57 -0.50 
 (-1.07) (-0.72) (-1.47) (-3.48) (-4.97) (-3.62) 
RIO 0.05 0.01 0.07 -0.09 -0.41 -0.47 
 (0.81) (0.25) (1.24) (-1.09) (-2.56) (-2.31) 
RCOVER 0.09 -0.02 0.07 0.00 -0.37 -0.46 
 (1.77) (-0.34) (1.22) (0.01) (-2.40) (-2.49) 
DISP -0.01 -0.05 -0.05 -0.01 -0.37 -0.36 
 (-0.20) (-0.81) (-0.88) (-0.16) (-2.53) (-2.16) 
BETA 0.06 -0.02 -0.07 -0.01 -0.46 -0.52 
 (1.42) (-0.56) (-1.44) (-0.18) (-4.07) (-3.87) 
SIZE 0.17 0.12 0.10 -0.01 -0.53 -0.70 
 (2.79) (2.10) (1.85) (-0.27) (-5.67) (-5.33) 
BM 0.08 0.01 0.05 -0.10 -0.36 -0.44 
 (1.45) (0.21) (1.05) (-1.50) (-2.74) (-2.80) 
REV 0.10 0.04 0.04 -0.05 -0.42 -0.52 
 (2.04) (0.69) (0.81) (-0.78) (-3.05) (-3.12) 
MOM 0.03 -0.06 -0.01 -0.04 -0.53 -0.56 
 (0.65) (-1.17) (-0.32) (-0.64) (-4.31) (-3.99) 
ILLIQ 0.11 0.13 0.05 -0.03 -0.48 -0.59 
 (1.82) (2.25) (0.97) (-0.63) (-5.05) (-4.38) 
TURN 0.11 0.08 0.04 -0.03 -0.46 -0.57 
 (2.30) (1.59) (0.83) (-0.52) (-4.65) (-5.13) 
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Table 5. Firm-level cross-sectional regressions 
This table reports the time-series averages of the coefficients from the cross-sectional regressions of stock returns on lagged values of various characteristics. 
CRASHP and JACKPOTP are the probabilities for extreme negative and positive returns over the next 12 months, respectively, predicted out-of-sample from the 
generalized logit model in Equation (1). The other firm characteristics include failure probability (FAILP), idiosyncratic volatility (IVOL), idiosyncratic skewness 
(ISKEW), maximum daily return in month t (MAX), minimum daily return in month t (MIN), analyst forecast dispersion (DISP), market beta (BETA), log of 
market capitalization (SIZE), book-to-market ratio (BM), return in month t (REV), return over month t − 6 to t − 1 (MOM), illiquidity (ILLIQ), and share turnover 
(TURN). The numbers in parentheses are t-statistics adjusted using Newey-West (1987) standard errors with 12 lags. The sample period is January 1972 to 
December 2015 for all control variables but FAILP that begins September 1972, and DISP that begins February 1976. 
 
CRASHP JACKPOTP FAILP IVOL ISKEW MAX MIN DISP BETA SIZE BM REV MOM ILLIQ TURN 

-6.23               
(-4.43)               
-6.82        0.02 -0.12 0.07 -0.03 0.01 -0.03 0.86 

(-6.32)        (0.56) (-3.10) (1.62) (-5.92) (4.58) (-3.15) (1.72) 
 -4.71              
 (-1.63)              
 -9.87       0.01 -0.15 0.12 -0.03 0.01 -0.02 -0.11 
 (-3.31)       (0.34) (-3.97) (2.28) (-5.84) (4.95) (-2.05) (-0.27) 

-8.63 6.42              
(-6.64) (2.32)              
-6.52 0.48       0.02 -0.10 0.07 -0.03 0.01 -0.04 0.74 

(-5.48) (0.13)       (0.65) (-2.49) (1.59) (-6.05) (4.25) (-3.15) (1.56) 
  -0.29             
  (-0.45)             
  -2.68      -0.01 -0.08 0.17 -0.03 0.01 -0.04 0.12 
  (-2.74)      (-0.21) (-1.90) (2.61) (-5.88) (2.91) (-3.72) (0.11) 

-5.59  0.18             
(-4.10)  (0.31)             
-5.74  -2.12      0.02 -0.13 0.10 -0.03 0.01 -0.03 0.74 

(-5.46)  (-2.78)      (0.53) (-3.24) (2.01) (-5.92) (3.12) (-3.19) (0.93) 
   -0.24            
   (-4.67)            
   -0.24     0.01 -0.11 0.12 -0.03 0.01 -0.02 0.94 
   (-6.51)     (0.31) (-3.17) (2.19) (-5.23) (4.54) (-2.10) (1.92) 

-4.61   -0.12            
(-3.75)   (-3.51)            
-5.64   -0.13     0.02 -0.14 0.07 -0.03 0.01 -0.02 1.52 

(-5.67)   (-4.83)     (0.80) (-3.83) (1.55) (-5.54) (4.55) (-2.27) (2.75) 
(continued) 
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(Table 5 continued) 

CRASHP JACKPOTP FAILP IVOL ISKEW MAX MIN DISP BETA SIZE BM REV MOM ILLIQ TURN 
    0.04           
    (1.66)           
    0.00    -0.01 -0.06 0.16 -0.03 0.01 -0.04 -0.67 
    (-0.17)    (-0.33) (-1.41) (2.59) (-5.84) (4.36) (-3.80) (-1.37) 

-6.46    0.05           
(-4.61)    (2.30)           
-6.86    0.01    0.02 -0.12 0.07 -0.03 0.01 -0.03 0.91 

(-6.38)    (0.32)    (0.54) (-3.06) (1.62) (-5.95) (4.37) (-3.14) (1.79) 
     -0.07 -0.01         
     (-5.44) (-0.86)         
     -0.02 -0.10  0.03 -0.11 0.12 -0.04 0.01 -0.02 1.11 
     (-2.07) (-8.94)  (1.02) (-2.94) (2.19) (-7.22) (4.53) (-2.22) (2.22) 

-4.92     -0.05 0.02         
(-4.03)     (-5.45) (1.12)         
-5.63     0.00 -0.08  0.04 -0.14 0.07 -0.04 0.01 -0.02 1.73 

(-5.55)     (0.62) (-8.24)  (1.29) (-3.79) (1.52) (-7.46) (4.52) (-2.27) (3.05) 
       -0.18        
       (-1.91)        
       -0.22 -0.02 -0.08 0.07 -0.02 0.01 -0.12 -0.76 
       (-2.08) (-0.39) (-1.97) (1.07) (-4.89) (4.29) (-2.53) (-1.52) 

-4.22       -0.16        
(-2.62)       (-1.76)        
-5.35       -0.22 0.00 -0.13 -0.01 -0.03 0.01 -0.09 0.18 

(-4.29)       (-2.00) (-0.01) (-3.20) (-0.26) (-5.30) (3.96) (-1.97) (0.44) 
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Table 6. Crash probability effects and limits-to-arbitrage 

This table reports returns on portfolios sorted on the predicted probability of price crashes, for subgroups classified by limits-to-arbitrage. For firm size (SIZE), at 
the end of each month t, stocks are sorted based on SIZE into tercile, and the smallest and the largest terciles are classified as ‘small’ and ‘big’ subgroups, 
respectively. For other limits-to-arbitrage variables, stocks are sorted into tercile based on SIZE first, and then within each size tercile, they are sorted into tercile 
based on each of price per share (PRC), illiquidity (ILLIQ), analyst coverage (COVER), or institutional ownership (IO). Stocks contained in the lowest PRC 
(ILLIQ, COVER, or IO) terciles within each size tercile are classified as ‘low price (liquid, low analyst coverage, or low institutional ownership)’ subgroup. 
Stocks contained in the highest PRC (ILLIQ, COVER, or IO) terciles within each size tercile are classified as ‘high price (illiquid, high analyst coverage, or high 
institutional ownership)’ subgroup. Then, within each of ten subgroups, quintile portfolios are constructed by sorting stocks based on crash probability (CRASHP) 
at the end of month t. Monthly value-weighted returns on each portfolio realized in month t + 2 are calculated, and mean returns, CAPM alphas, Fama-French 
three-factor alphas, and Carhart four-factor alphas are reported. Panel A reports returns on the zero-cost portfolios buying the highest and selling the lowest 
CRASHP quintile for each subgroup. Panel B and Panel C reports returns on the highest and the lowest CRASHP quintiles for each subgroup, respectively. The 
numbers in parentheses are t-statistics adjusted using Newey-West (1987) standard errors with 12 lags. The sample period is January 1972 to December 2015 but 
COVER that begins March 1976, and IO that begins June 1980. 
 

 Firm size Price Liquidity Analyst coverage Institutional ownership 

 Small Big Low High Illiquid Liquid Low High Low High 

Panel A: Highest − lowest CRASHP quintile 
Mean -0.75 -0.16 -0.89 0.12 -0.54 -0.24 -0.42 -0.22 -0.36 -0.39 
 (-2.73) (-0.55) (-2.39) (0.41) (-2.04) (-0.73) (-1.28) (-0.64) (-0.78) (-1.27) 
CAPM α -1.12 -0.56 -1.35 -0.24 -0.88 -0.72 -0.92 -0.77 -1.07 -0.81 
 (-4.55) (-2.25) (-4.01) (-0.95) (-3.79) (-2.55) (-3.27) (-2.35) (-2.75) (-2.79) 
Three-factor α -1.01 -0.21 -0.98 0.12 -0.61 -0.32 -0.64 -0.46 -0.64 -0.49 
 (-5.27) (-1.26) (-4.87) (0.59) (-4.05) (-1.60) (-3.16) (-2.18) (-2.17) (-2.23) 
Four-factor α -0.87 -0.05 -0.77 0.14 -0.44 -0.08 -0.61 -0.08 -0.48 -0.25 
 (-4.68) (-0.31) (-3.93) (0.79) (-3.17) (-0.45) (-3.23) (-0.39) (-1.61) (-1.32) 

(continued) 
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(Table 6 continued) 

 Firm size Price Liquidity Analyst coverage Institutional ownership 

 Small Big Low High Illiquid Liquid Low High Low High 

Panel B: Highest CRASHP quintile 
Mean 0.55 0.82 0.19 1.05 0.62 0.69 0.74 0.75 0.63 0.65 
 (1.49) (2.21) (0.43) (2.81) (1.80) (1.67) (1.92) (1.78) (1.21) (1.62) 
CAPM α -0.60 -0.38 -1.10 -0.11 -0.54 -0.60 -0.63 -0.65 -0.83 -0.74 
 (-2.39) (-1.95) (-4.01) (-0.51) (-2.90) (-2.52) (-2.89) (-2.30) (-2.44) (-3.24) 
Three-factor α -0.75 -0.08 -0.99 0.25 -0.52 -0.23 -0.53 -0.37 -0.49 -0.53 
 (-5.39) (-0.62) (-5.45) (1.46) (-4.36) (-1.35) (-3.44) (-1.96) (-1.75) (-2.93) 
Four-factor α -0.59 0.02 -0.59 0.17 -0.32 -0.06 -0.54 -0.03 -0.33 -0.33 
 (-4.19) (0.17) (-3.43) (1.14) (-3.04) (-0.34) (-3.72) (-0.14) (-1.18) (-2.04) 
Panel C: Lowest CRASHP quintile 
Mean 1.30 0.97 1.08 0.93 1.16 0.92 1.16 0.97 0.98 1.04 
 (6.15) (5.74) (5.45) (5.41) (6.32) (5.33) (6.47) (5.61) (5.92) (4.61) 
CAPM α 0.52 0.18 0.25 0.13 0.34 0.12 0.29 0.12 0.24 0.07 
 (3.27) (2.75) (1.82) (1.93) (2.69) (1.95) (2.27) (1.72) (2.61) (0.64) 
Three-factor α 0.25 0.13 -0.01 0.13 0.09 0.08 0.12 0.09 0.16 -0.04 
 (2.59) (2.57) (-0.16) (2.04) (1.18) (1.87) (1.38) (1.90) (2.26) (-0.41) 
Four-factor α 0.28 0.07 0.18 0.03 0.11 0.03 0.07 0.05 0.16 -0.08 
 (3.17) (1.39) (2.01) (0.43) (1.60) (0.64) (0.93) (1.14) (1.88) (-0.89) 
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Table 7. Crash probability effects across different sub-periods 

This table reports average risk-adjusted returns following sub-periods classified based on several binary state 
indicators, on decile portfolios sorted on the predicted probability of price crashes. At the end of each month t, decile 
portfolios are constructed by sorting stocks based on crash probability (CRASHP), and monthly value-weighted 
portfolio returns on each decile realized in month t + 2 are calculated. The average risk-adjusted returns following 
sub-periods are estimates of α1 and α2 in the following regression: 

 
1 1, 1 2 2, 1  ,t f t t t t t tr r D D MKT SMB HMLα α β γ δ ε− −− = + + + + +   

where D1,t−1 and D2,t−1 are dummy variables indicating each of the two states in month t − 1, and rt is the portfolio 
return in month t. Panel A shows results for high and low investor sentiment periods classified by the median value 
of the sentiment index of Baker and Wurgler (2006). Panel B shows results for expansion and recession periods 
classified by the NBER recession indicator. Panel C shows results for up and down market periods classified based 
on the sign of the CRSP value-weighted return in excess of one-month T-bill rate. Panel D shows results for high 
and low market liquidity periods classified by the sign of the liquidity innovation of Pastor and Stambaugh (2003). 
The numbers in parentheses are t-statistics adjusted using Newey-West (1987) standard errors with 12 lags. The 
sample period is January 1972 to October 2015 in Panel A, January 1972 to September 2014 in Panel B, and January 
1972 to December 2015 in Panels C and D. 
 
 1 2 3 4 5 6 7 8 9 10 10-1 

Panel A: High vs. low sentiment periods 
High sentiment 0.19 0.01 0.13 0.00 0.14 0.14 0.05 -0.17 -0.34 -0.82 -1.01 
 (2.96) (0.15) (1.44) (-0.04) (1.36) (1.08) (0.47) (-0.97) (-1.96) (-2.98) (-3.37) 
Low sentiment 0.10 -0.17 -0.07 0.12 0.12 0.06 -0.08 0.20 -0.14 -0.46 -0.57 
 (1.55) (-2.24) (-0.90) (1.35) (1.36) (0.51) (-0.70) (1.21) (-0.88) (-1.95) (-2.07) 
Difference 0.08 0.18 0.20 -0.12 0.02 0.08 0.13 -0.37 -0.21 -0.36 -0.44 
 (0.98) (1.83) (1.83) (-0.85) (0.13) (0.52) (0.82) (-1.58) (-0.90) (-1.07) (-1.18) 
Panel B: Expansion vs. recession periods 
Expansion 0.14 -0.09 0.02 0.08 0.15 0.09 0.01 0.06 -0.29 -0.56 -0.70 
 (2.60) (-1.46) (0.29) (1.02) (2.17) (0.91) (0.07) (0.49) (-2.47) (-2.68) (-3.00) 
Recession 0.20 -0.04 0.09 -0.03 0.04 0.19 -0.08 -0.23 -0.13 -0.97 -1.17 
 (1.51) (-0.21) (0.54) (-0.18) (0.20) (0.96) (-0.40) (-0.59) (-0.41) (-1.92) (-2.03) 
Difference -0.06 -0.05 -0.07 0.10 0.11 -0.10 0.09 0.29 -0.16 0.41 0.46 
 (-0.39) (-0.21) (-0.40) (0.64) (0.52) (-0.46) (0.42) (0.76) (-0.51) (0.77) (0.77) 
Panel C: Up vs. down market periods 
Up market 0.12 -0.06 -0.03 0.19 0.15 0.02 0.02 -0.02 -0.39 -0.65 -0.78 
 (1.88) (-0.81) (-0.30) (1.88) (1.87) (0.19) (0.17) (-0.14) (-2.70) (-2.84) (-2.99) 
Down market 0.18 -0.11 0.09 -0.14 0.10 0.19 -0.07 0.06 -0.01 -0.62 -0.80 
 (2.54) (-0.99) (0.88) (-1.22) (0.88) (1.89) (-0.51) (0.35) (-0.07) (-2.37) (-2.65) 
Difference -0.05 0.06 -0.11 0.33 0.05 -0.17 0.09 -0.08 -0.38 -0.03 0.02 
 (-0.58) (0.40) (-0.89) (1.93) (0.36) (-1.10) (0.48) (-0.44) (-1.61) (-0.11) (0.06) 
Panel D: High vs. low market liquidity periods 
High liquidity 0.15 -0.06 -0.02 0.10 0.10 0.01 0.03 -0.01 -0.23 -0.75 -0.89 
 (2.46) (-0.94) (-0.28) (1.00) (1.20) (0.12) (0.23) (-0.11) (-1.53) (-3.71) (-4.39) 
Low liquidity 0.15 -0.10 0.08 -0.01 0.16 0.21 -0.08 0.05 -0.23 -0.50 -0.65 
 (1.61) (-1.02) (0.64) (-0.13) (1.46) (1.61) (-0.67) (0.30) (-1.09) (-1.74) (-1.82) 
Difference 0.00 0.04 -0.10 0.11 -0.05 -0.19 0.10 -0.07 0.00 -0.25 -0.25 
 (-0.02) (0.36) (-0.65) (0.74) (-0.39) (-1.36) (0.63) (-0.40) (0.00) (-0.86) (-0.70) 
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Table 8. Crash probability effects, institutional ownership, and investor sentiment 

This table reports average risk-adjusted returns following high and low investor sentiment periods, on portfolios 
sorted by the predicted probability of price crashes for subgroups classified by institutional ownership. At the end of 
each month t, stocks are sorted into tercile based on firm size (SIZE) first, and then within each size tercile, they are 
sorted into tercile based on institutional ownership (IO). Stocks contained in the lowest and highest IO terciles 
within each size tercile are classified as ‘low institutional ownership’ and ‘high institutional ownership’ subgroups, 
respectively. Then, within each subgroup, quintile portfolios are constructed by sorting stocks based on crash 
probability (CRASHP), and monthly value-weighted returns on each portfolio realized in month t + 2 are calculated. 
The average risk-adjusted returns following high and low sentiment periods are estimates of α1 and α2 in the 
following regression: 

 
1 1, 1 2 2, 1  ,t f t t t t t tr r D D MKT SMB HMLα α β γ δ ε− −− = + + + + +   

where D1,t−1 and D2,t−1 are dummy variables indicating whether the level of the sentiment index of Baker and 
Wurgler (2006) in month t − 1 is above and below the median, respectively, and rt is the portfolio return in month t. 
The numbers in parentheses are t-statistics adjusted using Newey-West (1987) standard errors with 12 lags. The 
sample period is June 1980 to October 2015. 
 
 Low institutional ownership High institutional ownership 

 
Lowest 

CRASHP 
quintile 

Highest 
CRASHP 
quintile 

Highest − 
lowest 

Lowest 
CRASHP 
quintile 

Highest 
CRASHP 
quintile 

Highest − 
lowest 

High sentiment 0.19 -0.76 -0.95 0.03 -0.48 -0.51 
 (1.76) (-2.52) (-2.96) (0.26) (-2.05) (-1.82) 
Low sentiment 0.09 -0.07 -0.17 -0.13 -0.58 -0.46 
 (0.97) (-0.20) (-0.41) (-0.81) (-2.04) (-1.23) 
Difference 0.09 -0.69 -0.78 0.15 0.10 -0.06 
 (0.61) (-1.80) (-1.89) (0.91) (0.27) (-0.12) 
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Table 9. Jackpot effects and crash probability 
This table reports returns on portfolios sorted by the predicted probability of jackpot returns. Panel A reports risk-
adjusted returns on quintile portfolios sorted by jackpot probability (JACKPOTP). Panel B reports risk-adjusted 
returns on quintile portfolios sorted by JACKPOTP after controlling for crash probability (CRASHP). Panel C 
reports risk-adjusted returns on double-sorted portfolios based on CRASHP and JACKPOTP. Panel D reports 
average risk-adjusted returns on quintile portfolios sorted by JACKPOTP following high and low investor sentiment 
periods. In Panel A, at the end of each month t, quintile portfolios are constructed by sorting stocks based on 
JACKPOTP, and monthly value-weighted portfolio returns on each quintile realized in month t + 2 are calculated. In 
Panel B and Panel C, at the end of each month t, stocks are sorted based on CRASHP into quintile, and then within 
each quintile, they are sorted into quintile portfolios based on JACKPOTP. Monthly value-weighted portfolio 
returns on each intersection of the two sorts realized in month t + 2 are calculated. In Panel B, returns on each of the 
controlled JACKPOTP quintiles are defined as average returns across the CRASHP quintiles. In Panel C, returns on 
each intersection of the two quintile sorts are reported. Panels A, B, and C show portfolio returns adjusted for risk 
factors of the Fama-French three factor model. In Panel D, the average risk-adjusted returns following high and low 
sentiment periods are estimates of α1 and α2 in the following regression: 

 
1 1, 1 2 2, 1  ,t f t t t t t tr r D D MKT SMB HMLα α β γ δ ε− −− = + + + + +   

where D1,t−1 and D2,t−1 are dummy variables indicating high and low sentiment periods in month t − 1, respectively, 
classified by the median value of the sentiment index of Baker and Wurgler (2006), and rt is the value-weighted 
return on each of the JACKPOTP-sorted quintile in month t. The numbers in parentheses are t-statistics adjusted 
using Newey-West (1987) standard errors with 12 lags. The sample period is January 1972 to December 2015 for all 
panels but Panel D that ends October 2015. 
 
 Ranking on JACKPOTP  
 1 2 3 4 5 5-1 
Panel A: Value-weighted portfolios sorted by JACKPOTP 
Three-factor α 0.05 0.09 -0.09 -0.17 -0.42 -0.48 
 (1.97) (1.54) (-1.23) (-1.38) (-2.58) (-2.62) 
Panel B: Value-weighted portfolios sorted by JACKPOTP controlling for CRASHP 
Three-factor α -0.03 -0.03 -0.08 -0.06 0.04 0.07 
 (-0.65) (-0.50) (-1.45) (-0.91) (0.46) (0.77) 
Panel C: Three-factor alphas on value-weighted portfolios sorted by JACKPOTP within CRASHP subgroups 
Low CRASHP 0.08 0.09 -0.06 0.04 0.01 -0.08 

 (1.57) (1.52) (-0.80) (0.51) (0.08) (-0.80) 
2 0.04 0.02 0.11 0.14 0.19 0.15 
 (0.67) (0.26) (1.33) (1.63) (1.77) (1.35) 

3 0.09 0.09 0.06 0.07 0.32 0.22 
 (1.38) (1.36) (0.81) (0.69) (2.45) (1.43) 

4 -0.03 0.09 0.05 0.06 0.19 0.22 
 (-0.32) (0.85) (0.48) (0.53) (1.37) (1.55) 

High CRASHP -0.33 -0.44 -0.57 -0.62 -0.50 -0.17 
 (-2.24) (-2.66) (-2.88) (-3.25) (-2.40) (-0.90) 

5-1 -0.41 -0.53 -0.51 -0.66 -0.50  
 (-2.34) (-3.02) (-2.03) (-3.03) (-2.16)  
Panel D: Three-factor alphas on portfolios sorted by JACKPOTP following high vs. low sentiment periods 
High sentiment 0.10 0.04 -0.20 -0.47 -0.85 -0.96 
 (2.76) (0.59) (-1.73) (-2.67) (-4.33) (-4.37) 
Low sentiment 0.00 0.14 0.02 0.12 -0.01 -0.02 
 (0.11) (1.76) (0.15) (0.78) (-0.07) (-0.08) 
Difference 0.10 -0.09 -0.22 -0.58 -0.84 -0.94 

 (2.09) (-0.95) (-1.35) (-2.75) (-3.22) (-3.21) 
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Table 10. Failure probability and crash probability 

This table reports returns on decile portfolios sorted on the residual predicted probability of price crashes and the 
residual failure probability. The residual crash probability (RCRASHP) is defined as the residuals from the cross-
sectional regression of the predicted probability of price crashes (CRASHP) on failure probability (FAILP) at each 
month. The residual failure probability (RFAILP) is defined as the residuals from the cross-sectional regression of 
failure probability (FAILP) on crash probability (CRASHP) at each month. At the end of each month t, decile 
portfolios are constructed by sorting stocks based on each of RCRASHP and RFAILP, respectively. Monthly 
portfolio returns on each decile realized in month t + 2 are calculated, and mean returns, CAPM alphas, Fama-
French three-factor alphas, and Carhart four-factor alphas are reported. Panel A reports value-weighted returns on 
the RCRASHP-sorted portfolios, and Panel B reports value-weighted returns on the RFAILP-sorted portfolios. The 
numbers in parentheses are t-statistics adjusted using Newey-West (1987) standard errors with 12 lags. The sample 
period is October 1972 to December 2015. 
 
 1 2 3 4 5 6 7 8 9 10 10-1 

Panel A: Value-weighted portfolios sorted on RCRASHP 
Mean 1.03 0.99 0.90 0.95 1.04 1.14 0.98 0.91 0.77 0.48 -0.55 
 (5.16) (4.84) (4.29) (4.01) (4.56) (4.79) (3.75) (2.60) (2.31) (1.05) (-1.48) 
CAPM α 0.19 0.12 0.00 0.00 0.07 0.14 -0.07 -0.24 -0.41 -0.83 -1.02 
 (1.98) (1.17) (-0.05) (0.06) (0.94) (1.21) (-0.71) (-1.35) (-2.30) (-3.03) (-3.17) 
Three-factor α 0.10 0.04 -0.02 -0.01 0.12 0.20 0.03 -0.02 -0.21 -0.48 -0.58 
 (1.05) (0.40) (-0.32) (-0.15) (1.41) (1.87) (0.28) (-0.12) (-1.58) (-2.45) (-2.38) 
Four-factor α 0.16 0.09 -0.07 -0.07 0.10 0.24 0.06 0.02 -0.09 -0.28 -0.44 
 (1.65) (0.85) (-0.95) (-0.86) (1.25) (2.18) (0.58) (0.15) (-0.66) (-1.61) (-2.14) 
Panel B: Value-weighted portfolios sorted on RFAILP 
Mean 0.83 0.89 1.00 1.06 1.03 1.02 0.91 1.03 1.01 0.73 -0.10 
 (2.04) (2.90) (3.51) (4.12) (4.44) (4.44) (4.23) (4.48) (4.05) (2.52) (-0.33) 
CAPM α -0.39 -0.21 -0.07 0.06 0.07 0.07 -0.01 0.15 0.11 -0.25 0.14 
 (-1.50) (-1.21) (-0.49) (0.54) (0.85) (1.00) (-0.10) (1.31) (0.73) (-1.68) (0.43) 
Three-factor α -0.03 0.06 0.11 0.20 0.10 0.10 -0.05 0.07 -0.01 -0.45 -0.42 
 (-0.17) (0.41) (0.79) (1.93) (1.40) (1.35) (-0.57) (0.62) (-0.05) (-3.37) (-1.70) 
Four-factor α 0.06 0.07 0.07 0.18 0.10 0.09 -0.10 0.09 0.13 -0.19 -0.25 
 (0.34) (0.58) (0.55) (1.74) (1.07) (1.24) (-1.00) (0.86) (0.99) (-1.37) (-1.21) 
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Table 11. Returns on portfolios sorted by crash probability after controlling for anomaly variables 

This table reports risk-adjusted returns on quintile portfolios sorted on the predicted probability of price crashes after 
controlling for each of various anomaly variables. At the end of each month t, stocks are sorted based on an anomaly 
variable into quintile, and then within each quintile, they are sorted into quintile portfolios based on crash 
probability (CRASHP). Monthly value-weighted portfolio returns on each intersection of the two sorts realized in 
month t + 2 are calculated, and returns on each of the controlled CRASHP quintiles are defined as average returns 
across the control quintiles. The table shows portfolio returns adjusted for risk factors of the Fama-French three-
factor model. The anomaly variables include Ohlson’s (1980) O-score (OSCR), net stock issues (NSI) of Ritter 
(1991), composite equity issues (CEI) of Daniel and Titman (2006), total accruals (TA) of Sloan (1996), net 
operating assets (NOA) of Hirshleifer et al. (2004), gross profitability (GP) of Novy-Marx (2013), asset growth (AG) 
of Cooper et al. (2008), return on assets (ROA) of Fama and French (2006), and abnormal capital investment (ACI) 
of Titman et al. (2004). The numbers in parentheses are t-statistics adjusted using Newey-West (1987) standard 
errors with 12 lags. The sample period is January 1972 to December 2015. 
 
 Ranking on CRASHP  

 1 2 3 4 5 5-1 
Controlling for:       

OSCR 0.07 0.07 0.06 0.02 -0.40 -0.47 
 (1.27) (1.23) (1.19) (0.27) (-2.75) (-2.73) 
NSI 0.04 0.04 0.08 0.02 -0.26 -0.30 
 (0.86) (1.04) (1.67) (0.26) (-2.46) (-2.32) 
CEI 0.00 0.01 0.11 0.12 -0.17 -0.17 
 (-0.04) (0.22) (1.85) (1.71) (-2.06) (-1.58) 
TA 0.04 0.04 0.11 -0.03 -0.27 -0.30 
 (0.65) (0.96) (2.14) (-0.36) (-1.78) (-1.64) 
NOA 0.10 0.05 0.17 -0.07 -0.36 -0.46 
 (2.71) (1.29) (2.75) (-0.93) (-2.32) (-2.74) 
GP 0.04 -0.06 0.08 -0.05 -0.54 -0.58 
 (1.06) (-1.62) (1.49) (-0.49) (-3.45) (-3.36) 
AG 0.08 0.04 0.09 -0.04 -0.16 -0.25 
 (1.58) (0.86) (2.02) (-0.54) (-1.09) (-1.36) 
ROA -0.05 -0.14 -0.09 -0.22 -0.59 -0.54 
 (-0.93) (-2.15) (-1.39) (-2.47) (-4.83) (-3.97) 
ACI 0.06 -0.04 0.18 0.02 -0.23 -0.29 
 (1.23) (-0.82) (3.41) (0.19) (-1.94) (-2.01) 
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Table 12. Firm-level cross-sectional regressions with anomaly variables 

This table reports the time-series averages of the coefficients from the cross-sectional regressions of stock returns on lagged values of various anomaly variables 
and firm characteristics. CRASHP is the probabilities for extreme negative returns over the next 12 months, predicted out-of-sample from the generalized logit 
model in Equation (1). The anomaly variables include Ohlson’s (1980) O-score (OSCR), net stock issues (NSI) of Ritter (1991), composite equity issues (CEI) of 
Daniel and Titman (2006), total accruals (TA) of Sloan (1996), net operating assets (NOA) of Hirshleifer et al. (2004), gross profitability (GP) of Novy-Marx 
(2013), asset growth (AG) of Cooper et al. (2008), return on assets (ROA) of Fama and French (2006), and abnormal capital investment (ACI) of Titman et al. 
(2004). The other firm characteristics include market beta (BETA), log of market capitalization (SIZE), book-to-market ratio (BM), return in month t (REV), 
return over month t − 6 to t − 1 (MOM), illiquidity (ILLIQ), and share turnover (TURN). The numbers in parentheses are t-statistics adjusted using Newey-West 
(1987) standard errors with 12 lags. The sample period is January 1972 to December 2015. 
 
CRASHP OSCR NSI CEI TA NOA GP AG ROA ACI BETA SIZE BM REV MOM ILLIQ TURN 

-6.40 0.02                
(-3.90) (0.78)                
-6.84 -0.02         0.02 -0.10 0.07 -0.03 0.01 -0.03 0.88 

(-5.18) (-1.17)         (0.57) (-2.67) (1.23) (-6.62) (3.78) (-2.62) (1.15) 
-5.70  -1.36               

(-3.51)  (-3.59)               
-6.40  -1.16        0.02 -0.10 0.08 -0.03 0.01 -0.03 0.88 

(-4.91)  (-4.25)        (0.52) (-2.51) (1.35) (-6.59) (3.80) (-2.92) (1.13) 
-5.21   -0.37              

(-3.42)   (-4.01)              
-6.05   -0.34       0.02 -0.10 0.07 -0.03 0.01 -0.03 1.11 

(-4.79)   (-3.96)       (0.51) (-2.46) (1.19) (-6.67) (3.71) (-3.04) (1.41) 
-5.97    -0.70             

(-3.57)    (-2.03)             
-6.60    -0.67      0.01 -0.10 0.08 -0.03 0.01 -0.03 0.87 

(-4.97)    (-2.31)      (0.42) (-2.49) (1.31) (-6.59) (3.76) (-2.70) (1.11) 
-6.19     -0.44            

(-3.81)     (-2.64)            
-6.88     -0.42     0.01 -0.10 0.08 -0.03 0.01 -0.03 0.99 

(-5.22)     (-2.94)     (0.44) (-2.53) (1.49) (-6.65) (3.55) (-2.61) (1.24) 
-6.46      0.50           

(-3.87)      (2.75)           
-6.83      0.46    0.01 -0.09 0.12 -0.03 0.01 -0.03 0.84 

(-5.11)      (2.69)    (0.38) (-2.19) (1.95) (-6.72) (3.79) (-2.70) (1.03) 
(continued) 
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(Table 12 continued) 

CRASHP OSCR NSI CEI TA NOA GP AG ROA ACI BETA SIZE BM REV MOM ILLIQ TURN 

-5.74       -0.21          
(-3.48)       (-1.47)          
-6.55       -0.16   0.02 -0.09 0.08 -0.03 0.01 -0.03 1.05 

(-4.92)       (-1.59)   (0.52) (-2.37) (1.34) (-6.63) (3.81) (-2.69) (1.33) 
-5.63        7.11         

(-3.51)        (3.89)         
-6.24        9.52  0.01 -0.11 0.14 -0.03 0.01 -0.03 0.94 

(-4.87)        (4.80)  (0.47) (-2.65) (2.33) (-6.83) (3.11) (-2.77) (1.14) 
-6.11         -0.09        

(-3.68)         (-3.05)        
-6.91         -0.08 0.02 -0.11 0.07 -0.03 0.01 -0.03 1.02 

(-5.19)         (-3.69) (0.52) (-2.72) (1.21) (-6.58) (3.81) (-2.66) (1.27) 
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Figure 1. Cumulative profit of trading strategies based on crash probability 

This figure shows cumulative profits of the trading strategies based on the predicted probability of price crashes. At 
the beginning of each month t over the period January 1972 to December 2015, decile portfolios are formed by 
sorting stocks based on crash probability (CRASHP) in month t − 2. Then, the cumulative value of the value-
weighted buy-and-hold strategy on each decile is calculated, with initial investment of one dollar at the beginning of 
January 1972. “P1” and “P10” denote the lowest and the highest CRASHP decile, respectively, “P1-P10” is the 
difference between the two portfolios, and “RM” denotes the CRSP value-weighted portfolio. 
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Figure 2. Crash probability effects and changes in institutional holdings 

This figure shows the relation between changes in institutional holdings and the predicted probability of price 
crashes. At the end of each quarter, decile portfolios are constructed by sorting stocks based on crash probability 
(CRASHP). Number of institutions (INUM) is defined as the number of institutions holding a stock scaled by the 
average number of institutions in the same market capitalization decile each quarter (or as of the beginning of the 
period over which changes in institutional holdings are measured), and institutional ownership (IO) is defined as the 
fraction of shares owned by institutions each quarter. In Panel A, we plot the time-series and cross-sectional average 
of changes in institutional holdings during the six quarters prior to portfolio formation for each decile portfolio, 
where changes in institutional holdings are measured by both changes in number of institutions (∆INUM, left axis) 
and changes in institutional ownership (∆IO, right axis). In Panel B, for firms that enter into the highest CRASHP 
decile each quarter, we present average number of institutions (INUM, left axis) and average institutional ownership 
(IO, right axis) of the firms, in excess of the mean of each measure for all firms that have institutional holdings data 
that quarter, for six quarters before and after the entry into the highest CRASHP decile. We only include those firms 
that have non-missing data for the 13-quarter window around the event. The sample period is September 1981 to 
December 2015. 
 

Panel A: Changes in institutional holdings for CRASHP-sorted portfolios 

 
 

Panel B: Institutional holdings around the entry into the highest CRASHP decile 
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Figure 3. Loadings on Carhart four factors for portfolios sorted by crash and jackpot probability 

This figure plots loadings on factor portfolio returns in the Carhart four-factor model of decile portfolio returns 
sorted by the predicted probability of price crashes and jackpot returns. At the end of each month t, decile portfolios 
are constructed by sorting stocks based on each of crash probability (CRASHP) and jackpot probability 
(JACKPOTP). Monthly value-weighted portfolio returns on each decile realized in month t + 2 are calculated, and 
the monthly returns in excess of one-month T-bill rate are regressed on the Carhart four risk factors of MKT, SMB, 
HML, and WML. The sample period is January 1972 to December 2015. 
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Figure 4. Loadings on Carhart four factors for portfolios sorted by crash and failure probability 

This figure plots loadings on factor portfolio returns in the Carhart four-factor model of decile portfolio returns 
sorted by the predicted probability of price crashes and failure. At the end of each month t, decile portfolios are 
constructed by sorting stocks based on each of crash probability (CRASHP) and failure probability (FAILP). 
Monthly value-weighted portfolio returns on each decile realized in month t + 2 are calculated, and the monthly 
returns in excess of one-month T-bill rate are regressed on the Carhart four risk factors of MKT, SMB, HML, and 
WML. The sample period is January 1972 to December 2015 for the CRASHP-sorted portfolios, and October 1972 
to December 2015 for the FAILP-sorted portfolios. 
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Figure 5. Cumulative abnormal returns around entry into the top decile portfolio sorted by crash 
and failure probability  

This figure shows daily abnormal returns and cumulative abnormal returns around the entry into the top decile 
portfolio sorted based on each of the predicted probabilities of price crashes and firms’ failure. At the end of each 
month, decile portfolios are constructed by sorting stocks based on each of crash probability (CRASHP) or failure 
probability (FAILP). The event of interest is defined as the entry of a firm into the highest CRASHP (Panel A) or 
FAILP decile (Panel B). We present abnormal returns (AR, left axis) and cumulative abnormal returns (CAR, right 
axis) during the event window of 253 trading days, comprised of 126 pre-event days, the event day, and 126 post-
event days. AR and CAR are calculated based on the market model estimated from the window of 126 trading days 
prior to the event window. The sample period is January 1972 to December 2015 for the CRASHP-sorted portfolios, 
and August 1972 to December 2015 for the FAILP-sorted portfolios. 
 

 
Panel A: Highest CRASHP decile 

 
 

Panel B: Highest FAILP decile 

 
 


