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Abstract

We advance a model of consumption, retirement, and asset allocation in an incomplete

market in which an individual is subject to risk of involuntary permanent unemployment

that reduces her income severely, and has borrowing constraints. We show that the

interactions among consumption and portfolio choice can induce early retirement even

when forced unemployment risks and borrowing constraints are considered jointly. We

demonstrate that providing private unemployment insurance in an incomplete market is

beneficial to poor people and for people with a low post-retirement leisure preference, and

that the insurance can be privately priced and be sold by private insurance providers.
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1 Introduction

Optimal life-cycle consumption and portfolio selection have received much academic attention

in financial economics. Initial research in life-cycle models (Bodie et al., 1992) examined the

effect of the labor-leisure choice on an individual’s optimal consumption and portfolio choice.

Karatzas and Wang (2000) solved an optimal consumption and portfolio choice problem with

discretionary stopping, without considering labor income. Building on these papers, Farhi

and Panageas (2007) developed a theoretical model that can be used to examine interactions

among consumption, risky investment, and retirement. Choi and Shim (2006) studied the

optimal retirement and consumption and portfolio choice problem of an economic agent who

obtains labor income but suffers a utility loss (disutility) from labor while working. Extending

this work, Choi et al. (2008) solved the optimal retirement problem with consumption and

leisure choice for the more general constant elasticity of substitution utility function than the

constant relative risk aversion utility preference.

Among crucial elements that must be considered when studying consumption and portfolio

choice over the life cycle, labor income risks have an important influence on an individual’s

optimal strategies (Heaton and Lucas, 1997; Koo, 1998; Viceira, 2001; Cocco et al., 2005;

Polkovnichenko, 2007; Benzoni et al., 2007; Wachter and Yogo, 2010; Munk and Sørensen,

2010; Lynch and Tan, 2011). However, few researchers (Dybvig and Liu, 2010; Jang et al.,

2013, Bensoussan et al., 2013) have addressed interactions among consumption, portfolio

choice, and voluntary retirement with labor income risks.

Empirical or theoretical papers that explored the relationship between labor income risks

and an individual’s saving, asset composition, and retirement decision all seem to have a

certain restrictive assumption, i.e., they do not consider an optimal choice of retirement time

with labor income risks. To remedy this shortcoming, we aim to develop a theoretical model

that includes unemployment risks in a utility-maximizing framework, and that can be used

to derive important implications for the relationship between borrowing constraints and an

individual’s retirement behaviors. To the best of our knowledge, this is the first study to

present a model that predicts the optimal choices of life-cycle consumption, portfolio, and

retirement time for an individual who is subject to borrowing constraints and is exposed to

an unhedgeable risk of forced unemployment.

More specifically, this paper makes three major contributions.
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First, we advance a model of consumption, retirement, and asset allocation in an in-

complete market; the model considers the case in which an individual is subject to risk of

involuntary permanent unemployment that reduces her income severely,1 and who has bor-

rowing constraints. To focus how permanent unemployment shocks affect the individual’s

optimal strategies, the involuntary unemployment event is considered to be permanent; as a

result, the risk of unemployment is equivalent to the risk of forced or involuntary retirement.

Accordingly, an involuntarily unemployed person can be regarded as an involuntary retiree

who is forced to retire when an unemployment shock arrives. Throughout the paper, we im-

pose the borrowing constraints that an individual cannot borrow money with her unsecured

or uncollateralized future income before retirement (either voluntary or involuntary).2 Our

model shows that individuals with the borrowing constraint significantly reduce consumption

and risky investment even if the possibility of forced unemployment increases only slightly.

Second, we provide two useful concepts; “implicit value of income” (IVI) and “certainty

equivalent wealth gain” (CEWG). We define IVI as the marginal rate of substitution between

an individual’s income and financial wealth. Then it is the individual’s subjective marginal

value of her labor, i.e., a criterion for the individual’s optimal retirement decision; if IVI is

higher than the implicit value of after-retirement income, the individual is willing to delay

retirement; otherwise, she is willing to retire voluntarily. We also define CEWG as the largest

wealth that the individual is willing to give up to eliminate the risk of unemployment; i.e.,

CEWG is compensation in return for bearing the risk of forced unemployment. To go into

1Social securities and private insurance market are insufficient to hedge perfectly against large and negative

wealth shock (Gormley et al., 2010). Furthermore, private insurance market in which an individual hedges

against labor income risks is not competitive as compared to other insurance market (Cocco et al., 2005).

Therefore, we assume that social security insures some part of individual’s labor income during periods of

unemployment; i.e., that post-retirement income consists of unemployment allowances and income from other

public welfare services. This assumption has been used in previous standard life-cycle models (Carroll et al.,

2003; Cocco et al., 2005; Lynch and Tan, 2011).
2The wealth constraint has been considered in a complete market in the absence of labor income risks to

investigate its impact on an individual’s optimal strategies (Farhi and Panageas, 2007; Dybvig and Liu, 2010;

Jang et al., 2013). The crucial point here is that the borrowing constraint would be significant in an incomplete

market, especially when risks to labor income exist. Most studies regarding life-cycle consumption and portfolio

choice have emphasized that an individual cannot borrow money with her unsecured or uncollateralized future

income. Several papers consider both labor income risk and borrowing constraint (Viceira, 2001; Cocco et al.,

2005; Polkovnichenko, 2007; Benzoni et al., 2007; Wachter and Yogo, 2010; Munk and Sørensen, 2010).
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significantly greater detail in terms of the economic analysis, we use these concepts and

demonstrate how risk of forced unemployment affects optimal timing of retirement in the

presence of borrowing constraints.

Finally, we suggest a market innovation in an incomplete market by introducing the pri-

vate unemployment insurance proposed by Jang et al. (2013) and demonstrate that providing

private unemployment insurance in an incomplete market is beneficial to poor people and for

people with a low post-retirement leisure preference, and that the insurance can be privately

priced and be sold by private insurance providers.3 We consider an individual who is exposed

to risk of forced unemployment, and define reservation purchase price (RPP) as the maximal

lump-sum upfront premium that she is willing to pay for private unemployment insurance.

We compute (RPP) of private unemployment insurance and can say that the insurance is

marketable at an equivalent or lower price than the RPP if insurance companies can success-

fully eliminate the moral hazard problem of the policy holders. We also compute individual

welfare benefit (IWB) of the market innovation. The IWB is defined as the maximum wealth

that an individual is willing to give up to eliminate her risk of forced unemployment by pur-

chasing the private unemployment insurance. Our model confirms a positive IWB, and shows

that utility can be gained by introducing private unemployment insurance.

We acknowledge that the moral hazard problem is a major obstacle to adoption of private

unemployment insurance. This is because if individuals privately observe forced unemploy-

ment, they are willing to retire earlier or even at an initial time. However, the model excludes

this case by assuming that individuals cannot receive unemployment insurance coverage when

they enter voluntary retirement. Actually, according to Jang et al. (2013) and related liter-

ature, insurance companies can minimize moral hazard problems by putting some provisions

into insurance clauses.4

Using our model with carefully chosen parameters, the main results of this paper are

3Jang et al. (2013) considered a complete market in which an individual can purchase personalized unem-

ployment insurance. They conjecture that there exists the loading factor of the unemployment insurance has

an upper bound. An individual would be better off bearing all of the risk of involuntary unemployment rather

than taking the insurance policy to hedge the risks if the loading is positive and very large.
4For future work, we can consider an insurance company that cannot distinguish whether or not the per-

manently unemployed are involuntarily retired people. This inability is very costly for the insurance company.

Therefore, an interesting open problem is to consider an economy in which the insurance company cannot

distinguish between voluntary retirement and involuntary retirement.
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similar to results obtained in the literature on life-cycle consumption and portfolio with

optimal retirement timing (Farhi and Panageas, 2007; Dybvig and Liu, 2010; Jang et al., 2013;

Bensoussan et al., 2013). These papers provide some interesting observations that retirement

flexibility reduces consumption and increases risky portfolio, and that borrowing constraints

and labor income risks induce early retirement. What we show is that the interactions among

consumption and portfolio choice can induce early retirement even when forced unemployment

risks and borrowing constraints are considered jointly.

In this paper we extend a previous model (Bensoussan et al., 2013) of optimal retirement

in an incomplete market by adding a nonnegative wealth constraint. However, adding one

more constraint to a retirement problem gives rise to unwanted complexity in solving the

problem. A retirement problem with the nonnegative wealth constraint generally corresponds

to a variational inequality with two free boundaries (Farhi and Panageas, 2007; Dybvig and

Liu, 2010; Jang et al., 2013). However, none of the existing literature considers the retirement

problem with two free boundaries in an incomplete market as we do. The approach of Dybvig

and Liu (2010) who solved the retirement problem with borrowing constraints in a complete

market does not seem to apply to our problem in an incomplete market. Importantly, we

successfully show analytical solutions to a retirement problem with borrowing constraints

in an incomplete market. Although this paper shares the same fundamental idea with that

of Jang et al. (2013), we provide a fairly quantitative welfare analysis and implications for

private unemployment insurance, which Jang et al. (2013) left as an open problem.

We believe that the proposed model will be useful as a tool to study policy implications in

pension, insurance, and retirement. By calibrating the wealth-to-income ratios in our model

to meet the ratios between family net worth and before-tax family income of the Survey of

Consumer Finance for the period 1995-2010, we get two interesting results concerning private

unemployment insurance. First, both the RPP of the private unemployment insurance and

the IWB from the market innovation might be significantly high for poor people and for

people with a low post-retirement leisure preference. Second, under bad market conditions,

the RPP and the IWB might increase.

The paper is organized as follows. In Section 2, we describe a financial market with

unemployment risks, and specify a retirement problem in an incomplete market and introduce

private unemployment insurance. In Section 3, we provide analytical results and investigate
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the interactions among consumption, risky investment, and voluntary retirement. In Section

4, we derive numerical implications with carefully chosen parameters for optimal strategies

and private unemployment insurance. In Section 5, we conclude the paper.

2 The Basic Model

2.1 Financial Market and Unemployment Risks

Following the conventional models (Merton, 1969, 1971), we assume that there are two assets

in the financial market: a bond (or a risk-free asset) and a stock (or a risky asset). The bond

price B(t) follows

dB(t) = rB(t)dt,

where r > 0 is a risk-free interest rate. The stock price S(t) is given by the following geometric

Brownian motion:

dS(t) = µS(t)dt+ σS(t)dW (t),

where µ > r is the expected rate of the stock return, σ > 0 is the volatility of the return on the

stock, and W (t) is a standard Brownian motion defined on a suitable probability space. The

investment opportunity provided by the stock is summarized by the expected stock return µ

and the stock volatility σ, and assumed to be constant, i.e., r, µ, σ are positive constants.5

We assume that an individual either works full time with income I1 per unit time or retires

permanently with income I2 (I1 > I2). Income after retirement can be annuitized payout from

a Social Security program or subsistence such as public welfare or unemployment allowances

provided by the government.

The individual is exposed to an unexpected, exogenous, and permanent reduction in future

income from I1 to I2 when forced unemployment occurs. To focus on the effect of permanent

unemployment shocks on the individual’s optimal strategies, the involuntary unemployment

event is considered to be permanent; as a result, the risk of unemployment is equivalent to

5The assumption of a geometric Brownian motion for the stock price, combined with that the investment

opportunity is constant, is standard in the literature on investment (Farhi and Panageas, 2007; Dybvig and

Liu, 2010; Jang et al., 2013; Bensoussan et al., 2013). In this paper, we abstract away from other complex

issues stemming from a stochastic investment opportunity. For treatment of investigation for the effect of a

stochastic investment opportunity, see Chacko and Viceira (2005), and Liu (2007).
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the risk of forced or involuntary retirement. Accordingly, an involuntarily unemployed person

can be regarded as an involuntary retiree who is forced to retire when an unemployment shock

arrives. Common reasons for involuntary retirement have been poor health condition (43.6%),

lay off/dismissal (21.2%), and closed business (10.9%) (Lachance and Seligman, 2008).

Most importantly, the unemployment risk considered in this paper causes a permanent

and disastrous labor income shock, which has important influences on an individual’s optimal

policies over the life-cycle (Viceira, 2001). To treat a disastrous labor income shock, see Cocco

et al. (2005) who allow for the very small probability of a zero labor income draw of an in-

dividual’s labor income process. We assume that there are no financial tools (e.g., securities,

financial contracts, and insurance contracts) to fully hedge against the unemployment risks.

Accordingly, the financial market is essentially incomplete. To model the market incomplete-

ness caused by the risk of forced unemployment, we use a Poisson jump process; i.e., the

time to a forced unemployment event is distributed according to an exponential distribution.

Specifically, the individual can lose her job when an exogenous unemployment shock modeled

by the Poisson jump process arrives before a voluntary retirement time. More specifically, for

time t ≥ 0

Probability of {τU ≤ t} = 1− e−δt,

where τU is the time at which forced unemployment occurs and δ > 0 is an intensity for the

unemployment time.6

Voluntary retirement and involuntary retirement (or forced unemployment) differently

affect an individual’s optimal strategies. In the absence of unemployment risks, an individual

works full time with labor income I1, which is certain and insurable over the life-cycle. Then

she has the following present value of future labor income discounted at the risk-free interest

6The unemployment event is assumed to occur at the first jump time τU of a Poisson process with in-

tensity δ, which is independent of the Brownian motion W (t). We can relax the assumption by considering

a stochastically-changing δ. We confirm that our main results are robust such change of the assumption.

Concerning the modeling of the unemployment event, it is a well-known fact that mortality, disability, retire-

ment, unemployment, and many other events occur at an uncertain time, so the τU following an exponential

distribution can aptly capture such uncertain lifetime (Merton, 1971; Richard, 1975; Blanchard, 1985; Viceira,

2001).
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rate r (Friedman, 1957; Hall, 1978):7

E
[ ∫ ∞

0
e−rtI1dt

]
=
I1
r
, (1)

which represents the individual’s human wealth. However, in the presence of unemployment

risks, the individual encounters an unexpected, exogenous, and permanent reduction in labor

income from I1 to I2 when the unemployment event occurs, so she works with a stochastic

labor income stream I(t), which evolves by

I(t) =


I1, if 0 ≤ t < τ ∧ τU ,

I2, if t ≥ τ ∧ τU ,
(2)

where τ is the voluntary retirement time. Then the individual has the following human

wealth:

E
[ ∫ τU

0
e−rtI(t)dt

]
=

1

r + δ

(
I1 + I2

δ

r

)
, (3)

which is adjusted by the intensity δ for unemployment event.

For the limiting case of δ = 0, the individual is not exposed to unemployment risks, as a

result, she continuously obtains a constant labor income I1. In this case, the human wealth

formulated by (3) reduces to the one given by (1). When she has a possibility of involuntary

unemployment, i.e., δ > 0, the amount of income decreases from I1 to I2, so that the human

wealth is adjusted by the unemployment intensity δ with after-retirement income I2. More

specifically, as we compared to the human wealth (1), the human wealth (3) is smaller and

given by the present value of the sum (I1+I2
δ
r ) of labor income I1 and after-retirement income

I2
δ
r , adjusted by the unemployment intensity δ, discounted at the sum of risk-free interest

rate r and intensity δ. For the other limiting case of δ = +∞, the individual is unemployed

and hence she receives after-retirement income I2. In that case, the human wealth is given

by I2/r, which is the same as the one of (1) except for that in (1) I1 is replaced by I2.

2.2 The Retirement Problem

The retirement problem considered in this paper can be regarded as an extension of the

problem explored by Farhi and Panageas (2007), but it allows for an unexpected, exogenous,

7The discount rate can be adjusted by considering perceived unemployment risk. For example, we can

replace the risk-free interest rate r by the sum of r and the intensity δ for unemployment time. This change

of the discount rate does not alter our main results.
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and permanent reduction in future income caused by forced unemployment (or involuntary

retirement) event. Importantly, a permanent and drastic decrease of income significantly

affects an individual’s asset composition (Cocco et al., 2005; Polkovnichenko, 2007; Lynch

and Tan, 2011) and voluntary retirement behaviors (Jang et al., 2013; Bensoussan et al.,

2013).

An individual has the following logarithmic and time-additive utility function of Cobb-

Douglas type (Bensoussan et al., 2013):

U(l(t), c(t)) ≡ 1

a
ln(l(t)1−ac(t)a),

where c(t) is per-period consumption, l(t) is leisure preference at time t, and 0 < a < 1 is the

weight for consumption. We assume that the individual either works full time with income

I1 per unit time or retires permanently, and enjoys leisure l(t) = l while working and l(t) = l

(l ≥ l > 0) when she retires.8 We also assume that the individual receives a post-retirement

income I2 (I1 > I2) per unit time. If we normalize pre-retirement leisure l as 1, the utility

function during working status is given by

U(1, c(t)) = ln c(t).

The utility function after (voluntary or involuntary) retirement follows

U(l, c(t)) = ln{l1/a−1
c(t)}.

For the notational simplicity, we introduce the following constant K:

K ≡ l
1/a−1

> 1.

Then the constant K represents post-retirement leisure preference; i.e., an individual enjoys

more leisure as K increases. The constant K also reflects that fact that the marginal utility of

consumption is larger after retirement than before retirement. This preference for leisure after

8Economists usually assume that the income rate of I1 is equivalent to ω(l − l) during working, if the

wage rate ω > 0 is constant. In this paper, labor supply can be adjusted only along the extensive margin.

If individuals can adjust hours of work on the job (Bodie et al., 1992), some results might be modified. To

obtain a more tractable life-cycle model, we follow Farhi and Panageas (2007) and Dybvig and Liu (2010) who

assume that the individual’s retirement decision is controlled by her rather than labor flexibility along the

intensive margin. We leave the retirement problem of an individual who can respond to unemployment risks

by changing her labor hours as an open problem.
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retirement results from a disutility of work (Choi and Shim, 2006), or household production,

or cost savings (Dybvig and Liu, 2010). For instance, retirement may allow sufficient time to

enjoy leisure (such as shopping for bargains, preparing meals, and taking a cruise etc); i.e.,

time spent away from business work, domestic chores, and education.

The individual’s wealth process X(t) with initial wealth X(0) = x should satisfy

dX(t) =
(
rX(t)− c(t) + I(t)

)
dt+ π(t)σ(dW (t) + θdt), for t ≥ 0, (4)

where π(t) is the dollar amount invested in the stock, θ denotes the Sharpe ratio, (µ− r)/σ,

and I(t) is a stochastic labor income stream formulated by (2). The individual accumulates

wealth at the rates of (rX(t)−c(t)+I(t)). She consumes at the rate equal to c(t) and obtains

risk-free interests in proportional to wealth by the bond investment. Most importantly, the

individual’s income stream is stochastic due to an unexpected, exogenous, and permanent

reduction in future income induced by forced unemployment event, accordingly the wealth

accumulation also varies according to the changes of income level I(t).

The individual chooses to allocate her wealth between a risk-free bond and a risky stock.

When the individual invests in the stock market, she is exposed to the market risk from her

stock holdings, i.e., bears stochastic fluctuations of wealth caused by the term that involves

the Brownian motion W (t). Specifically, the wealth randomly changes at the rate π(t)σ,

which is the product of the dollar amount π invested in the stock and the stock volatility σ

that denotes the standard deviation of the return on the stock. Risk taking is compensated

for by a positive risk premium, so that the rate of wealth accumulation is increased by

π(t)σθ = π(t)(µ−r), the product of the amount π invested in the stock and the risk premium

(µ− r), as we compared to the case where the individual invests only in the risk-free bond.

Throughout the paper, we impose borrowing constraints prior to voluntary or involuntary

retirement as the following:

X(t) ≥ 0 for 0 ≤ t < τ ∧ τU . (5)

The wealth constraint has been considered in a complete market in the absence of labor in-

come risk to investigate its impact on an individual’s optimal strategies (Farhi and Panageas,

2007; Dybvig and Liu, 2010; Jang et al., 2013). The crucial point here is that the nonneg-

ative wealth constraint would be significant in an incomplete market, especially when labor
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income risk exists. Most papers regarding life-cycle consumption and portfolio choice empha-

size the nonnegative wealth constraint; i.e., that an individual cannot borrow money with

her unsecured or uncollateralized future income at all times. For treatments that consider

both labor income risk and borrowing constraints, see Viceira (2001), Cocco et al. (2005),

Polkovnichenko (2007), Benzoni et al. (2007), Wachter and Yogo (2010), and Munk and

Sørensen (2010).

In this paper, an individual is assumed to have after-retirement income I2, which can be

annuitized payout from a Social Security program or subsistence such as public welfare or

unemployment allowances provided by the government. Then the individual has the following

present value of after-retirement income discounted at the risk-free interest rate:

E
[ ∫ ∞

0
e−rtI2dt

]
=
I2
r
.

Thus, we impose a natural wealth constraint after voluntary or involuntary retirement as the

following:

X(t) ≥ −I2
r

for t ≥ τ ∧ τU .

That is, we allow for borrowing with secured or collateralized after-retirement income.

The retirement problem is to maximize the individual’s life-time utility function of con-

sumption by controlling per-period consumption c, risky investment π and voluntary re-

tirement time τ in the presence of risk of forced unemployment, i.e., to find the following

individual’s value function:

Φ(x) ≡ max
(c,π,τ)

E
[ ∫ τ∧τU

0
e−βt ln c(t)dt+ e−β(τ∧τU )

∫ ∞

τ∧τU
e−β(t−τ∧τU ) ln (Kc(t))dt

]
, (6)

where x ≥ 0 is the initial wealth of the individual, E is the expectation taken at time 0

and K > 1 is the preference for leisure.9 The random variable τU represents the time at

which forced unemployment time occurs, and β > 0 is the individual’s subjective discount

rate. In (6) we consider a risk-averse individual and assume that she has a log-type utility

9We consider an infinite-horizon life-cycle model; as a result, we overestimate the effects of unemployment

risks in that our representation of forced unemployment is more painful than it actually is because unemployed

people undergo a drastic decrease of income forever. Furthermore, to increase the realism of the life-cycle

model, a finite-horizon model with time-varying unemployment probability should be considered, because

unemployment risks fluctuate significantly at business cycle frequencies. However, such a modification makes

the retirement problem difficult to solve and is far beyond the scope of the current paper.
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for her consumption. The second part of the right hand side in (6) is equivalent to the value

function of an individual in Merton’s (1969) problem with income stream I2 over an infinite

investment horizon. For simplicity, we assume that the individual has no bequest motive.

The presence of the bequest motive reinforces the effect of an unexpected, exogenous, and

permanent reduction in future income when forced unemployment occurs.

2.3 Private Unemployment Insurance

The retirement problem considered in the previous sections is an optimal consumption and

portfolio selection problem for an individual who wants to retire someday in the future,

but who is exposed to risk of forced unemployment and is subject to borrowing constraints.

Because we assume that unemployment risks cannot be diversified away, the financial market

considered until now has been incomplete.

Specifically, borrowing the idea of Jang et al. (2013),10 we construct a complete market

by considering private unemployment insurance with a premium rate of δ
(
X(t)−X(t)

)
in the

financial market. Then the wealth process X(t) of the individual under its coverage should

satisfy

dX(t) =


{
rX(t)− c(t) + I1 − δ

(
X(t)−X(t)

)}
dt+X(t)π(t)σ(dW (t) + θdt),

for 0 ≤ t < τ ∧ τU ,(
rX(t)− c(t) + I2

)
dt+X(t)π(t)σ(dW (t) + θdt), for t ≥ τ ∧ τU ,

(7)

where X(t) is the potential retirement wealth process; the individual pays δ
(
X(t)−X(t)

)
per

unit time and obtains the lump-sum unemployment coverage of (X(t) −X(t)) at the forced

unemployment time. If a forced unemployment event occurs before the voluntary retirement

time, the individual receives (X(t)−X(t)), therefore, her wealth level immediately jumps from

X(t) to X(t), then she can arrive at the voluntary retirement wealth level which was planned

initially by utilizing the traditional optimal consumption and risky investment strategies

(Merton, 1969), that is, X(t) = X(t) for t ≥ τ in this case.

The retirement problem for the individual who has insurance coverage is now defined as

Ψ(x) ≡ max
(c,π,X,τ)

E
[ ∫ τ∧τU

0
e−βt ln c(t)dt+ e−β(τ∧τU )

∫ ∞

τ∧τU
e−β(t−τ∧τU ) ln (Kc(t))dt

]
, (8)

10Jang et al. (2013) introduced fully personalized unemployment insurance to hedge against unemployment

risks. Our paper considers a private unemployment insurance, the same as theirs.
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and an analytical solution can be obtained by utilizing the dynamic programming approach.11

3 Analytical Results

In this section, we provide analytical results for an individual’s optimal retirement behavior,

and optimal consumption and risky investment strategies in the presence of risk of forced

unemployment.

3.1 Optimal Retirement Behavior

To begin, we use the following lemma to reformulate the value function formulated by (6).

Lemma 3.1 The value function (6) can be rewritten by

Φ(x) = max
(c,π,τ)

E
[ ∫ τ

0
e−(β+δ)t

{
ln c(t) + δU2(X(t))

}
dt+ e−(β+δ)τU2(X(τ))

]
, (9)

where

U2(z) =
1

β

[
ln

{
β
(
z +

I2
r

)}
+

1

β

(
r +

θ2

2
− β(1− lnK)

)]
.

Proof. See Appendix. Q.E.D.

The term U2(·) in Lemma 3.1 represents the value function of an individual who obtains

income at the rate of I2 infinitely. Note that the value function reformulated by (9) shows

that in the presence of risk of forced unemployment, an individual optimally considers both

her consumption and her wealth at the time of forced unemployment. More specifically, the

term δU2(X(t)) in the first integral term in the right hand side of (9) captures the utility

value of wealth after involuntary retirement. The term is the product of the intensity δ

for the unemployment time and the maximized value of the individual’s utility after the

unemployment event.

For the extreme case of δ = 0, i.e., the individual is not exposed to risk of forced unemploy-

ment, she maximizes a utility function of intermediate consumption and a utility function of

wealth at voluntary retirement time (Farhi and Panageas, 2007). For the other limiting case

of δ = +∞, i.e., the individual is unemployed, the value function Φ(x) given by (9) reduces

to the value function U2(x) obtained under the assumption that the individual’s income is

given by the rate equal to I2 infinitely (Merton, 1969).

11See Appendix 6.6 for the details.
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A retirement problem with borrowing constraints generally corresponds to a variational

inequality with two free boundaries (Farhi and Panageas, 2007; Dybvig and Liu, 2010; Jang

et al., 2013). However, this situation only holds in a complete market. Most importantly, our

paper is distinguished from the existing literature in that we consider an incomplete market

in which unhedgeable unemployment risk and borrowing constraints are concurrent. Now we

provide a lemma that clarifies the relationship between the optimal retirement problem in an

incomplete market and the optimal stopping problem.

Lemma 3.2 The value function reformulated by (9) satisfies the optimal stopping problem

given by the following variational inequality: for any x ≥ 0,

(β + δ)ϕ(x)− (rx+ I1)ϕ
′(x) +

θ2

2

ϕ′(x)2

ϕ′′(x)
+ 1 + lnϕ′(x) ≥ δU2(x),

ϕ(x) ≥ U2(x),[
(β + δ)ϕ(x)− (rx+ I1)ϕ

′(x) +
θ2

2

ϕ′(x)2

ϕ′′(x)
+ 1 + lnϕ′(x)− δU2(x)

](
ϕ(x)− U2(x)

)
= 0.

(10)

Proof. See Appendix. Q.E.D.

The optimal retirement strategy for an individual consists of two regions: a continuation

region in which the individual’s optimal choice is to work; and a stopping region in which she

should retire voluntarily. The first inequality in the variational inequality (10) shows that

the equality holds in the continuation region and the strict inequality holds in the stopping

region. Specifically, the equality is the Hamilton-Jacobi-Bellman equation that was derived

when optimality conditions to consumption and risky investment were applied to an optimal

consumption and portfolio choice problem (Merton, 1969). The strict inequality in the second

inequality denotes the case where the individual’s value function with a retirement option

is larger than the value function after voluntary or involuntary retirement. In this case, the

individual is in the continuation region, so optimally she continues to work. If the individual’s

value function before voluntary retirement approaches the value function after retirement,

then the individual is in the stopping region, and should retire voluntarily. The third equality

in (10) is necessary because the first and second inequalities cannot hold simultaneously, i.e.,

the stopping region and the continuation region characterized by the first strict inequality

and the second strict inequality, respectively, cannot coexist.
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The continuation and stopping regions are determined by the so-called critical wealth

level ; if the individual has more than this wealth, her optimal decision is to retire. We

conjecture that our optimal stopping problem formulated by the variational inequality (10)

can be solved by finding two free boundaries; one is an optimal stopping boundary x̂, i.e., the

critical wealth level; the other is a free boundary that corresponds to the nonnegative wealth

constraint (5). These two boundaries are determined by value-matching and smooth-pasting

conditions. Specifically, we consider the following problem:

(β + δ)ϕ(x)− (rx+ I1)ϕ
′(x) +

θ2

2

ϕ′(x)2

ϕ′′(x)
+ 1 + lnϕ′(x) = δU2(x), 0 ≤ x < x̂,

ϕ(x) = U2(x), x ≥ x̂,

ϕ(x̂) = U2(x̂),

ϕ′(x̂) =
1

β

1

x̂+ I2/r
.

(11)

In fact, the problem stated above is exactly same as the one given by Bensoussan et al.

(2013) except for that initial wealth is always larger than or equal to zero, which represents

the nonnegative wealth constraint.12

3.2 Optimal Consumption and Risky Investment Strategies

To derive the optimal consumption and risky investment strategies of an individual who is

faced with a risk of forced unemployment, we must find a solution to the free boundary

problem (11). Solving the highly nonlinear differential equation given by the first equation

in (11) analytically seems to be hardly possible. In general optimal consumption and port-

folio choice problems in an incomplete financial market are difficult to solve. In this paper

the market incompleteness arises from a down-jump of income at the time of forced unem-

ployment; to overcome this problem, Jang et al. (2013) introduced a personalized private

unemployment insurance and constructed a complete market, so they successfully solved the

optimal retirement problem by using the martingale approach of Karatzas and Shreve (1998).

Distinct from Jang et al. (2013), we use the conventional dynamic programming approach

to solve the optimal retirement problem in an incomplete market. Actually, the approach

shares the same fundamental idea with Bensoussan et al. (2013) who solved the optimal

12If we find ϕ(x) such that it is C1 and piecewise C2, satisfying the inequalities given in the variational

inequality (10). Also, the solution to (10) is equivalent to the value function Φ(x) given by (9). For the details,

see Appendix.
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retirement problem with unemployment risks. However, this paper differs significantly frmo

theirs in the way in which solutions were derived. Importantly, we are required to determine

two free boundaries rather than one free boundary. The two free boundaries are determined

by the appropriate value-matching and smooth-pasting conditions.

We modify the idea of Bensoussan et al. (2013) and apply it to our optimal retirement

problem that includes both unhedgeable risk and borrowing constraints. We provide the

following lemma that restates the free boundary problem (11) by using the modified approach.

Lemma 3.3 The Hamilton-Jacobi-Bellman equation formulated by the first relationship in

(11) is modified as the following nonlinear equation:

−1

2
θ2λ2G′′(λ)−λG′(λ)(θ2+β+δ−r)+rG(λ)+ δ

β

G′(λ)

G(λ)− I1/r + I2/r
=

1

λ
, λ < λ < λ̄, (12)

where G is a convex-dual function of the value function ϕ, λ is a marginal value of the value

function ϕ, and λ̄ and λ are two free boundaries to be determined by the value-matching and

smooth-pasting conditions, corresponding to the borrowing constraints and critical wealth level,

respectively.

Proof. See Appendix. Q.E.D.

Function G is called the convex-dual function. We verify that the G is monotonically-

decreasing with respect to an increase in initial wealth x. Further, the function G has an

implicit relationship with the marginal value of the value function ϕ as the following:

G
(
λ(x)

)
≡ G

(
ϕ′(x)

)
= x+ I/r.

Therefore, G is the dual function of the value function ϕ such that it is increasing and concave

in initial wealth. Under reasonable parameter values, the dual function G can be verified to

be convex in initial wealth.

In Lemma 3.3, the free boundary λ has an inverse relationship with the critical wealth

level x̂ as follows: λ = 1
β(x̂+I2/r)

. To determine the free boundary λ̄ we use the value-matching

and smooth-pasting conditions. More specifically, we use the following boundary conditions

of ϕ and ϕ′ at x̂:

ϕ(x̂) = U2(x̂), ϕ′(x̂) =
1

β

1

x̂+ I2/r
.

As stated in Lemma 3.3, the another free boundary λ̄ corresponds to the borrowing constraints

and should be determined by the appropriate value-matching and smooth-pasting conditions.
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The first natural condition can be imposed as the following:

G(λ̄) ≡ G
(
ϕ′(0)

)
= I1/r,

by utilizing the implicit relationship between the convex-dual function G and the marginal

value ϕ′ of the value function ϕ. Further, we impose one more constraint

G′(λ̄) = 0,

which gives the zero risky investment as the individual’s initial wealth approaches zero.13

For the next, we present an important theorem that suggests an analytic solution to the

Hamilton-Jacobi-Bellman equation (12).

Theorem 3.1 An analytic solution to the Hamilton-Jacobi-Bellman equation (12) is given

by

G(λ) =
1

λ(β + δ)
+B(λ)λ−αδ +B∗(λ̄)λ−α∗

δ

+
2δ

θ2(αδ − α∗
δ)β

[
(αδ − 1)λ−αδ

∫ λ

λ

µαδ−2 ln
{
β
(
G(µ)− I1

r
+
I2
r

)}
dµ

+(α∗
δ − 1)λ−α∗

δ

∫ λ̄

λ

µα∗
δ−2 ln

{
β
(
G(µ)− I1

r
+
I2
r

)}
dµ

]
,

(13)

where αδ > 0 and α∗
δ < 0 are the two solutions to the following characteristic equation:14

F (α; δ) ≡ −1

2
θ2α(α− 1) + α(β + δ − r) + r = 0,

and B(λ) and B∗(λ̄) are two constants to be determined according to the value-matching and

smooth-pasting conditions.

Proof. See Appendix. Q.E.D.

The optimal consumption and portfolio choice of an individual before voluntary retirement

in an incomplete financial market can be stated as a functional of the convex-dual function

G.

13If initial wealth approaches zero, then the individual cannot consume and invest in the stock market,

i.e., in this case consumption c and risky investment π should be zero. Note that optimality conditions for

consumption and risky investment are given by

c∗(t) =
1

ϕ′(x)
=

1

λ∗(x)
, and π∗(t) = − θ

σ

ϕ′(x)

ϕ′′(x)
= − θ

σ
λ∗(x)G′(λ∗(x)

)
,

accordingly the constraint of G′(λ̄) = 0 implies the zero risky investment at zero wealth level.
14We impose parameter conditions such that (β+ δ− r+ 1

2
θ2)2 +2θ2r > 0 in order to ensure that there are

two distinct solutions to the characteristic equation.
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Theorem 3.2 The optimal consumption c∗ and risky investment π∗ before voluntary retire-

ment in an incomplete financial market are given by

c∗(t) = (β + δ)
(
x+

I1
r

)
− (β + δ)B(λ)λ∗(x)−αδ − (β + δ)B∗(λ̄)λ∗(x)−α∗

δ

− 2δ(β + δ)

θ2(αδ − α∗
δ)β

[
(αδ − 1)λ∗(x)−αδ

∫ λ∗(x)

λ
µαδ−2 ln

{
β
(
G(µ)− I1

r
+
I2
r

)}
dµ

+ (α∗
δ − 1)λ∗(x)−α∗

δ

∫ λ̄

λ∗(x)
µα

∗
δ−2 ln

{
β
(
G(µ)− I1

r
+
I2
r

)}
dµ

]
,

(14)

π∗(t) =
θ

σ

1

λ∗(x)(β + δ)
+
θ

σ
αδB(λ)λ∗(x)−αδ +

θ

σ
α∗
δB

∗(λ̄)λ∗(x)−α∗
δ − 2δ

σθβλ∗(x)
ln

{
β
(
x+

I2
r

)}
+

2δ

σθ(αδ − α∗
δ)β

[
αδ(αδ − 1)λ∗(x)−αδ

∫ λ∗(x)

λ
µαδ−2 ln

{
β
(
G(µ)− I1

r
+
I2
r

)}
dµ

+ α∗
δ(α

∗
δ − 1)λ∗(x)−α∗

δ

∫ λ̄

λ∗(x)
µα

∗
δ−2 ln

{
β
(
G(µ)− I1

r
+
I2
r

)}
dµ

]
,

(15)

where λ∗(x) is a decreasing function of wealth x.

Proof. See Appendix 6.7. Q.E.D.

When no forced unemployment event occurs (i.e., δ = 0), our consumption strategy

becomes similar to the form given by Farhi and Panageas (2007) and Dybving and Liu (2010):

c(t) = β
(
x+

I1
r

)
− βB(λ)λ∗(x)−αδ − βB∗(λ̄)λ∗(x)−α∗

δ . (16)

Under the assumption that

lnK > λ(I1 − I2)
(
1 +

θ2α∗
0

2r

)
,

B(λ) > 0, and thus, the second term of the right hand side of (16), which is closely associated

to voluntary retirement, has a negative value. This implies that an individual who is con-

sidering voluntary retirement consumes relatively less than in the classical portfolio selection

problems (Merton, 1969), because the desire for voluntary retirement results in a cutback in

consumption to accumulate wealth. The effect of reducing consumption seems to increase as

her wealth increases, or equivalently as λ∗ decreases; this conclusion is also consistent with

the results in Farhi and Panageas (2007) and Dybvig and Liu (2010) in which individuals are

willing to significantly decrease their consumption as voluntary retirement time approaches.
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The third term of the right hand side of equation (16) reveals the effect of the borrowing

constraints on consumption. Under the assumption that B∗(λ̄) > 0, or put differently,

α0I1
r

λ̄ >
α0 − 1

β
,

the individual consumes less in the presence of the borrowing constraints than in their absence.

The effect of the constraint on the individual’s consumption seems to become more significant

as her wealth decreases, and this trend implies that poor people, who mostly have a high

possibility of binding the wealth constraint, tend to reduce consumption more than do rich

people.

The effect of risk of forced unemployment on optimal consumption is revealed by the last

two terms in the bracket of the right hand side of equation (14). As the individual’s wealth

approaches the critical wealth level x̂ (or λ∗ approaches λ), the first term in the bracket

vanishes and the second term becomes a positive fixed value. Therefore, near retirement,

individuals who are exposed to risk of unemployment might consume more than do individuals

who are not exposed to this risk. In contrast, for a sufficiently small wealth level, the first term

remains negative but the second one disappears. As a result, unemployment risks reinforce

the negative effect of borrowing constraints on the individual’s consumption, and accordingly,

induce poor people who have the risks to consume far less than do poor people who do not

have unemployment risks.

Concerning optimal risky investment π∗, for δ = 0 we get

π(t) =
θ

βσ

1

λ∗(x)
+
θ

σ
α0B(λ)λ∗(x)−α0 +

θ

σ
α∗
δB

∗(λ̄)λ∗(x)−α∗
0 . (17)

The second term of the right hand side of (17) represents the positive effect of voluntary

retirement on the individual’s risky investment and becomes increasingly significant as her

wealth approaches the critical wealth level x̂. This trend implies that a strong desire for

voluntary retirement makes the individual increase her investment in the risky asset; this

conclusion is comparable to the findings of Farhi and Panageas (2007) and Dybvig and Liu

(2010). In contrast, the negative effect of the wealth constraints on risky investment becomes

increasingly significant as wealth decreases. Hence, poor people invest less in the risky asset

than do rich people.

The effect of unemployment risks on optimal risky investment is mainly represented in

the fourth term and the last two terms in the bracket of the right hand side of equation

19



(15). The fourth term in (15), which has a negative value, allows the individual to reduce her

risky investment, whereas the last two terms in the bracket have positive values, which make

her increase her investment in the risky asset. Combining all the effects, the adjustment of

risky portfolio can be either larger or smaller in the presence of unemployment risks than

in their absence. When the individual has sufficient wealth, her optimal portfolio choice in

the presence of unemployment risks is not much different from that in their absence; i.e.,

a sufficiently rich individual is little affected by the presence of unemployment risks when

formulating risky investment strategy.

4 Numerical Implications

We analyze the sensitivity of the individual’s optimal consumption and risky investment

strategies, and optimal retirement behaviors with respect to the changes of parameter values.15

4.1 Baseline Parameters

The baseline market parameters are set as follows: r = 3.71%, the annual rate from rolling

over of 1-month T-bills during the time period of 1926−2009;16 µ = 11.23% and σ = 19.54%,

the return and standard deviation, respectively, of a portfolio consisting of the world’s large

stocks during the same time period;17 I1 = 1, the annual rate of income prior to retirement;

K = 3 by adopting the parameter value used in Dybvig and Liu (2010), the post-retirement

leisure preference; and I2 = 0.10 by following Lynch and Tan (2011),18 the post-retirement

income that can be annuitized payout from a Social Security program or subsistence such as

public welfare or unemployment allowances provided by the government.

We assume that the subjective discount rate β equals to the risk-free interest rate r. This

assumption can be rational in the sense that in determining the appropriate discount rate,

we have considered perceived unemployment risks. More specifically, we replaced β by β+ δ,

which is the subjective discount rate adjusted by the intensity δ for the unemployment time.

15We exploit the iterative procedure in Appendix 6.7 to present graphical illustration and more detailed

discussion of our main results given in Theorem 3.2.
16Source: Bureau of Labor Statistics.
17See pp. 170 of Bodie, Kane, and Marcus (2011)
18They believed that unemployment state pays 10% of permanent labor income and utilize it to obtain

economic results.
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This is reflected by the discount rate used in the value function (9).

In this paper, the retirement state occurs in two ways: First, an individual optimally enters

retirement when she reaches a certain wealth threshold (the so-called critical wealth level); or

she is forced to retire because of unemployment shock. In either case, the retirement status

is irreversible.19 Most importantly, we allow for the small possibility of a disastrous labor

income shock that is modeled as a down-jump of income from I1 to I2 with some probability.

Carroll (1997) used this type disastrous labor income shock and Cocco et al. (2005) modeled

the disastrous shock as the presence of a 0.5% probability of zero income at each period in a

life cycle (discrete-time and finite horizon) framework. Therefore, we also set δ to 0.5%. This

simply means that the individual can become employed and her income is modeled as being

I1 with an annual probability of 99.5%. Otherwise, she becomes unemployed permanently

and her income is modeled as following I2 with an annual probability of 0.5%.20

4.2 Optimal Consumption and Portfolio Selection

Empirical evidence available suggests that an individual’s labor income is exposed to both

permanent and transitory shocks (MaCurdy, 1982; Abowd and Card, 1989, Carroll, 1992).

Importantly, income fluctuations induced by such income shocks cause an individual to ac-

cumulate savings as a precaution. Caballero (1990, 1991), Weil (1993) found a constant

precautionary savings demand due to the assumption of CARA utility, but Wang (2006)

found stochastic precautionary savings by allowing for conditional heteroskedasticity, i.e., the

conditional variance of income changes is an affine function of the labor income.

The amounts of optimal consumption and risky investment decrease as the intensity δ

of forced unemployment increases (Table 1). Importantly, individuals could be significantly

affected by risk of forced unemployment even if the possibility of unemployment is very small.

For example, the individual with wealth x̂−45 reduces consumption by 16.42% as δ increases

19Viceira (2001) also considered irreversible retirement status that occurs with a constant probability. An

interesting extension of this paper is to allow an individual to reenter the workforce at a reduced income after

retirement.
20The annual unemployment probability is given by∫ 1

0

δe−δtdt = 1− e−δ.

When we set δ = 0.5%, we obtain an annual probability of 0.5%.
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from 0 to 0.5%. Further, as income shocks become increasingly persistent (i.e., δ increases),

the amount of consumption also decreases; this trend demonstrates that the incentive to

engage in precautionary saving increases. This is an empirically testable prediction.

[Insert Table 1 here.]

Economists have reached a consensus that increased flexibility in labor supply induces

increase in stock holdings (Bodie et al., 1992; Farhi and Panageas, 2007; Dybvig and Liu,

2010), whereas increase in labor income risks tends to decrease risky investment (Koo, 1998;

Heaton and Lucas, 2000; Jang et al., 2013). We believe that undiversifiable unemployment

risk is one of the main sources of background risk (Kimball, 1993) and show that the individual

willingly takes lower risk when investing in financial assets in the face of such unhedgeable

risk.

For example, the individual with wealth x̂− 45 reduces risky investment by 23.80% as δ

increases from 0 to 0.5%; this trend implies that individuals with a small wealth reduce their

risky investment more than do rich people (Table 1). Some important implications are that

a large wealth is a good buffer against disastrous labor income shocks, and that risky asset

may not be a good substitute for the defaultable labor income; as a result, to reduce her risk

exposure the individual reduces her investment in the risky asset.

The amounts of optimal consumption and risky investment are expected to increase as

an individual’s wealth increases (Figure 1). An interesting feature that has been obtained

in previous work is that retirement flexibility reduces consumption and increases investment

in a risky portfolio (Farhi and Panageas, 2007; Dybvig and Liu, 2010; Jang et al. (2013),

and Bensoussan et al., 2013). We show that this conclusion still holds even when the risk

of forced unemployment and the borrowing constraints are considered jointly. In particular,

due to the individual’s strong desire for voluntary retirement, the optimal consumption ratio

and optimal risky investment ratio decrease and their rates of decrease decline as wealth

approaches the critical wealth level x̂.

Further, consumption and investment ratios decrease more rapidly as the expected rate

of stock return µ decreases. The intuition is as follows: voluntary retirement becomes in-

creasingly attractive to the individual if her investment opportunity degrades. The opposite

results are true for volatility parameter σ, which leads us to the same economic implications

(Figure 2).
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[Insert Figure 1 and 2 here.]

Consumption decreases and investment in the risky asset increases as the individual’s

leisure demand increases (Figure 3). Intuitively, she can enter early retirement by reducing

consumption and pursuing higher expected portfolio returns. Furthermore, for an individual

with a high leisure preference, the optimal strategy may be to reduce her consumption rate

more rapidly and her investment ratio less rapidly when imminent voluntary retirement is

anticipated than when it is not. This is because a high leisure demand boosts preference for

retirement, so the individual is willing to reduce consumption and increase stockholdings.

[Insert Figure 3 here.]

4.3 Optimal Retirement Strategy

The proportion of workers who opted for early retirement sharply increased between 1995 and

2000 owing to the booming U.S. stock market (Gustman and Steinmeier, 2002). The rationale

is that investing for early retirement reinforces an individual’s behavior that increases her

savings and stock market exposure compared to the case in which early retirement is not

allowed (Farhi and Panageas, 2007). As a result, the booming stock market is accompanied

by the increased proportion of voluntary retirees. This observation suggests that meaningful

gauge of rising confidence in the stock market can help to understand the increase in the

number of individuals who chose early retirement.

However, in 2000, “Issues in Labor Statistics” published by the US Bureau of Labor Statis-

tics showed that the number of voluntary retirees demonstrate a counter-cyclical pattern: the

number increases during down-markets and decreases during up-markets. Jang et al. (2013)

confirmed this counter-cyclical pattern in a complete market, and Bensoussan et al. (2013)

confirmed it in an incomplete market.

Our analysis complements existing understanding of voluntary retirement behaviors in

two ways. First, we show that an individual enters retirement when she reaches a certain

wealth threshold (i.e., the critical wealth level); we will illustrate this trend clearly in the next

subsection. Along with the wealth threshold an intuitive prediction can be made. In addi-

tion to determining financial resources for future consumption, the individual’s accumulated

wealth controls her optimal time of retirement. Further, we study how the critical wealth
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level depends on the level of investment opportunity, preference for leisure after retirement,

and unemployment risks. Second, we analyze the value of income with respect to changes

in various parameter values by using a useful concept of an implicit value of income: i.e.,

the marginal rate of substitution between an individual’s income and financial wealth. Then

the implicit value of income is the individual’s subjective marginal value of her labor, i.e.,

a criterion for the individual’s optimal retirement decision; a higher value than the implicit

value of after-retirement income implies that the individual is willing to work, thereby de-

laying retirement, but a lower value implies that the individual is willing to enter voluntary

retirement.

4.3.1 Critical Wealth Level

For an individual with strong demands for post-retirement leisure, the optimal choice is to

enter voluntary retirement as soon as her wealth reaches x̂. This is the wealth at which utility

gains due to the increase in leisure are equal to utility losses due to the decrease in income

after retirement.

The critical wealth level at which an individual chooses to retire increases as expected

return rates increase or as stock volatility decreases (or both), because these changes increase

the attractiveness of investing in financial assets to increase wealth, rather than retiring early

to enjoy leisure (Table 2). Increase in preference for leisure after retirement (i.e., the increase

in K) may have the opposite effect.

[Insert Table 2 here.]

4.3.2 Implicit Value of Income

The post-retirement actuarially-fair value (PRAV) of income should be

E
[ ∫ ∞

0
I2e

−rtdt
]
=
I2
r
,

which will be regarded as a benchmark measure of implicit value of income in this subsection.

Following Koo (1998), we define an implicit value of labor income as the marginal rate of

substitution between income and financial wealth.

Definition 4.1 Let Φ(x; I1, δ) be the value function described in section 2.2 given that the

annual rate of income prior to retirement is I1 and the unemployment intensity is δ. Then
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the implicit value of income is defined as

∂Φ(x; I1, δ)

∂I1

/∂Φ(x; I1, δ)
∂x

.

The implicit value of income increases as wealth increases up to a somewhat small level,

then starts to decrease (Figure 4). This hump-shaped pattern implies that labor income may

be attractive to the poor, but may be gradually less attractive as the individual’s wealth

increases, as a result, individuals enter voluntary retirement when the desire for early retire-

ment dominates the utility gains from the labor income. Accordingly, the intersection point

of the implicit value of income and the PRAV of income is the critical wealth level, and as

expected the intersection happens at a smaller wealth level in the presence of risk of forced

unemployment than in its absence.

[Insert Figure 4 here.]

The relationship between implicit value of income and investment opportunity (Figure

5) reveals that the poor might prefer a high risk premium from the stock investment over

uninsurable or unhedgeable labor income, whereas the opposite might be true for the rich who

are about to retire. Uninsurable or unhedgeable labor income can not be a good substitute

for the risky stock; labor income will be less favorable to the poor than to the rich when the

risky asset guarantees a high risk premium, i.e., if the financial market has a good investment

opportunity.

[Insert Figure 5 here.]

Intuitively, a low post-retirement leisure preference induces a high implicit value of labor

income. Therefore, as an individual’s post-retirement leisure preference decreases, her will-

ingness to delay retirement to increase utility gains from the labor income increases (Figure

6).

[Insert Figure 6 here.]

4.4 Certainty Equivalent Wealth Gain for Unemployment Risks

We define a certainty equivalent wealth gain (CEWG) for unemployment risks as the largest

wealth that an individual is willing to give up in exchange for making the individual’s income
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unemployment-free. In this sense, the CEWG serves as compensation for the individual

in return for bearing risk of forced unemployment. The certainty equivalent wealth gain

(CEWG) is computed as follows:

Definition 4.2 ∆(x) is called the certainty equivalent wealth gain (CEWG) at initial wealth

x if it satisfies

Φ(x−∆(x); I1, 0) = Φ(x; I1, δ),

where Φ(x; I1, δ) is the value function described in (6) provided that the annual rate of income

prior to retirement is I1 and the unemployment intensity is δ.

CEWG increases as δ increases (Figure 7). Even for a small unemployment intensity

δ = 0.5%, the CEWG can have substantial values of up to 10% of wealth; this disproportion-

ately high reaction implies that an individual is willing to pay a substantial portion of her

wealth to eliminate the unemployment risks. This observation is consistent with the fact that

individuals (especially the poor) are significantly anxious about the presence of risk of forced

unemployment.

[Insert Figure 7 here.]

CEWG increases as µ decreases or σ increases (or both), because increase in an individual’s

investment opportunity decreases the amount of wealth that the individual is willing to pay

to eliminate unemployment risks. (Figure 8).

[Insert Figure 8 here.]

CEWG is sensitive to changes of post-retirement leisure preference K (Figure 9). As an

individual’s leisure demand K increases, the CEWG required to buffer against unemployment

risks increases, because the stress that the individual experiences due to the risk of forced

unemployment increases as K increases.

[Insert Figure 9 here.]

4.5 Unemployment Risks and Private Unemployment Insurance

The retirement problem considered in the previous sections is an optimal consumption and

portfolio selection problem for an individual who wants to retire someday in the future, but
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who is exposed to a risk of forced unemployment, and is subject to borrowing constraints.

Because we have assumed that unemployment risks cannot be fully diversified away, the

financial market considered until now has been incomplete. In this section, we suggest a

market innovation in the incomplete market by introducing the private unemployment insur-

ance proposed by Jang et al. (2013), and demonstrate that providing private unemployment

insurance in an incomplete market is beneficial to poor people and for people with a low

post-retirement leisure preference, and that the insurance can be privately priced and be sold

by private insurance providers.

We compute reservation purchase price (RPP) of private unemployment insurance and can

say that the insurance is marketable at an equivalent or lower price than the RPP if insurance

companies can successfully eliminate the moral hazard problem of the policy holders. The

RPP is defined as the maximal lump-sum upfront insurance premium that the individual who

is exposed to risk of forced unemployment is willing to pay to obtain the coverage of private

unemployment insurance. We also compute individual welfare benefit (IWB) of the market

innovation. The IWB is defined as the maximum wealth that an individual is willing to give

up to eliminate her risk of forced unemployment by purchasing the private unemployment

insurance. Our model confirms a positive IWB, and shows that utility can be gained by

introducing private unemployment insurance.

To obtain empirically plausible implications, we match an individual’s wealth-to-income

ratios in our model (in which we fix income rate to one) to the ratios between family net

worth and before-tax family income of the Survey of Consumer Finance (SCF). Following

the SCF, we group U.S. families into percentiles of net worth during the period of 1995-2010

(Figure 10). Both family net worth and before-tax family income increase with percentile of

net worth.

4.5.1 Reservation Purchase Price of Unemployment Insurance

According to Jang et al. (2013), the actuarially-fair premium rate of the unemployment

insurance is δ
(
X(t) − X(t)

)
, and the individual should pay it continuously if she wants

insurance coverage of
(
X(t)−X(t)

)
when forced unemployment occurs.

We define a new value function for the case in which the individual enters the unemploy-

27



ment coverage without any insurance premium payment,

Ψ̃(x) ≡ max
(c,π,τ)

E
[ ∫ τ∧τU

0
e−βt ln c(t)dt+ e−β(τ∧τU )

∫ ∞

τ∧τU
e−β(t−τ∧τU ) ln (Kc(t))dt

]
, (18)

which is subject to the wealth equation (4) and the borrowing constraints (5). We assume that

wealth process is discontinuous at forced retirement time τU , and consequently, the wealth

X(τU ) jumps to the critical wealth level X
∗
(τU ), described in (23), of the complete market

case.21 Following Damgaard (2003) we can define the RPP of the unemployment insurance

as follows.22

Definition 4.3 The reservation purchase price (RPP) of the unemployment insurance is

defined as ϵ(x) which satisfies

Ψ̃(x− ϵ(x)) = Φ(x),

where Ψ̃(x) is the value function described in (18) and Φ(x) is the value function described

in (6).

The RPP also can be interpreted as the sum of subjectively-discounted unemployment

insurance premiums paid by the individual policyholder.

An individual’s RPP increases as her net worth decreases; this result implies that a person

with low net worth will pay much more to obtain insurance coverage than will a person with

high net worth (Table 3). Because poor individual’s time to voluntary retirement is expected

to be quite long, she has sufficient motivation to increase the amount of insurance that she

purchases to hedge against the risk of forced unemployment. For example, an individual

in the 0 ∼ 25 net worth group is willing to spend 59.42% of her wealth to purchase the

unemployment insurance when µ = 0.1123, σ = 0.1954, and K = 3. Moreover, as post-

retirement leisure preference K decreases, the price that an individual is willing to pay for

insurance increases. An individual with a low post-retirement leisure preference tends to

target a high (voluntary) retirement wealth level, so that she is likely to be exposed to

21The value function Ψ̃(x) is just a little variation of Ψ(x). Therefore we can easily get the value function

in a similar way.
22Damgaard (2003) provides a utility-based option valuation method in the presence of proportional trans-

action costs, and defines the reservation purchase and write price of a European call option. He shows that

the reservation prices are the same as the option prices given by the classical Black-Scholes (1973) model if

the financial market is complete and frictionless.
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unemployment risks. This increases her motivation to purchase the insurance. We also find

that a good investment opportunity reduces the RPP. Obviously, good market conditions

reduce the stress that individuals feel due to risk of forced unemployment, because individuals

are likely to reach voluntary retirement wealth level easily.

[Insert Table 3 here.]

4.5.2 Individual Welfare Benefit of Market Innovation

Many researchers have studied the IWB of unemployment insurance provided by government

(Sheshinski and Weiss, 1979; Hamermesh, 1982; Abel, 1985; Kotlikoff et al., 1987; Hansen and

Imrohoroğlu, 1992; Acemoglu and Shimer, 1999), but none has explored the IWB of adopting

private unemployment insurance. In this paper, we compute the IWB by comparing the

value functions in the incomplete financial market described in the previous sections and in a

corresponding complete market that is constructed by using private unemployment insurance

(Section 2.3).

Definition 4.4 The individual welfare benefit (IWB) of private unemployment insurance is

measured by ∇(x) satisfying

Ψ(x−∇(x)) = Φ(x),

where Ψ(x) is the value function described in (8), subject to the wealth equation (7) and the

borrowing constraints (5), and Φ(x) is the value function described in (6).

The IWB decreases with an individual’s net worth; this trend implies that the introduction

of private unemployment insurance might increase drastically the welfare of the poor (Table

6.8.4). Specifically, when µ = 0.1123, σ = 0.1954, and K = 3, individuals in the 0 ∼ 25 net

worth group get 17.10% of their wealth as the IWB. Moreover, the effect of market innovation

becomes remarkable for individuals under a bad investment opportunity. As an extreme case

when µ = 0.1023, individuals in the 0 ∼ 25 net worth group get 24.89% of their wealth

as the IWB. Moreover, an individual’s IWB seems to increase as her post-retirement leisure

preference K decreases.

[Insert Table 6.8.4 here.]
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5 Conclusion

We present a model of consumption, retirement, and asset allocation in an incomplete market;

the model considers the case in which an individual is subject to risk of involuntary perma-

nent unemployment that reduces her income severely, and who has borrowing constraints.

Integrating flexibility in retirement timing and risks to labor income, we derive important im-

plications for the relationship between borrowing constraints and an individual’s retirement

behaviors with unemployment risks in a utility maximizing framework. Results of this paper

may be relevant to questions of policy regarding pension, insurance, and retirement.

Using with carefully-chosen parameters, our model produces results that are similar to

those previously obtained in the literature on life-cycle consumption and portfolio with op-

timal retirement timing. We show that the interactions among consumption and portfolio

choice can induce early retirement even when forced unemployment risks and borrowing con-

straints are considered jointly. More specifically, we find that retirement flexibility reduces

consumption and increases in the risky portfolio, and that borrowing constraints and labor

income risks induce early retirement.

This paper raises four main questions that should be considered in future research on

life-cycle consumption and portfolio choice. First, in our modeling we adopted the certainly-

restrictive assumption that the investment opportunity is constant: i.e., risk-free interest

rate, expected rate of stock return, and stock volatility are all constant. Investigating the

effects of a stochastic investment opportunity on an individual’s optimal policies would be an

interesting extension of this paper. To reflect a stochastic investment opportunity using the

simplest possible setup, one can introduce a continuous-time Markov regime-switching model

through which the effects of economic recessions and economic expansions on an individual’s

optimal strategies can be investigated.

Second, concerning the private unemployment insurance suggested by the paper, we can

consider an insurance company that cannot distinguish whether or not the permanently un-

employed are involuntarily retired to account for moral hazard. The moral hazard problem

is very costly for the insurance company. Accordingly, an interesting open problem is to use

an economy in which the insurance company cannot distinguish voluntary retirement from

involuntary retirement.

Third, under the normative focus on the paper that investigates how the joint considera-
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tion of unemployment risks and borrowing constraints affects an individual’s optimal strate-

gies, we have ignored the positive equilibrium implications. Most importantly, a detailed

equilibrium analysis and extensions of the paper would attempt to derive the general equilib-

rium implications for equity premium and risk-free interest rate in a Lucas-style equilibrium

asset pricing model.

Finally, inclusion of the possibility that the individual can reenter the workforce after

forced unemployment event would increase the realism of the model. Unemployed people

should spend a job-searching cost to find a new job and can receive smaller labor income

after reentering the workforce than before unemployment.

6 Appendix

6.1 Proof of Lemma 3.1

Recall that the value function Φ(x) is given by

Φ(x) ≡ max
(c,π,τ)

E
[ ∫ τ∧τU

0
e−βt ln c(t)dt+ e−β(τ∧τU )

∫ ∞

τ∧τU
e−β(t−τ∧τU ) ln

(
Kc(t)

)
dt
]
.

We define the value function of an individual who receives income at the rate equal to I2

infinitely as the following:

U2

(
X(τ ∧ τU )

)
≡ max

(c,π)
E
[ ∫ ∞

τ∧τU
e−β(t−τ∧τU ) ln

(
Kc(t)

)
dt
]
.

Let s = τ ∧ τU . Then

U2

(
X(s)

)
= max

(c,π)
E
[ ∫ ∞

s
e−β(t−s) ln

(
Kc(t)

)
dt
]
.

Using the dynamic programming approach in Merton (1969, 1971) or the martingale approach

in Karatzas and Shreve (1998), we obtain

U2

(
X(s)

)
=

1

β

[
ln

{
β
(
X(s) +

I2
r

)}
+

1

β

(
r +

θ2

2
− β(1− lnK)

)]
.

Further, by the principle of dynamic programming we can rewrite the value function Φ(x)

given in (6) as the following:

Φ(x) = max
(c,π,τ)

E
[ ∫ τ∧τU

0
e−βt ln c(t)dt+ e−β(τ∧τU )U2

(
X(τ ∧ τU )

)]
.
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The conditional expectation of τU allows us to obtain the following result:

E
[ ∫ τ∧τU

0
e−βt ln c(t)dt+ e−β(τ∧τU )U2

(
X(τ ∧ τU )

)]
= E

[
E
[ ∫ τ∧τU

0
e−βt ln c(t)dt+ e−β(τ∧τU )U2

(
X(τ ∧ τU )

)]∣∣∣τU]
= E

[ ∫ ∞

0
δe−δs

∫ τ∧s

0
e−βt ln c(t)dtds+

∫ ∞

0
δe−δse−β(τ∧s)U2

(
X(τ ∧ s)

)
ds
]

= E
[ ∫ τ

0
δe−δs

∫ s

0
e−βt ln{c(t)}dtds+

∫ ∞

τ
δe−δs

∫ τ

0
e−βt ln{c(t)}dtds

+

∫ τ

0
δe−δse−βsU2

(
X(s)

)
ds+

∫ ∞

τ
δe−δse−βτU2

(
X(τ)

)
ds
]

= E
[ ∫ τ

0
e−βt ln c(t)

∫ τ

t
δe−δsdsdt+

∫ τ

0
e−βt ln c(t)

∫ ∞

τ
δe−δsdsdt

+

∫ τ

0
e−(β+δ)sδU2

(
X(s)

)
ds+ e−(β+δ)τU2

(
X(τ)

)]
= E

[ ∫ τ

0
e−βt ln c(t)

∫ ∞

t
δe−δsdsdt+

∫ τ

0
e−(β+δ)sδU2

(
X(s)

)
ds+ e−(β+δ)τU2

(
X(τ)

)]
= E

[ ∫ τ

0
e−(β+δ)t

{
ln c(t) + δU2

(
X(t)

)}
dt+ e−(β+δ)τU2

(
X(τ)

)]
.

6.2 Proof of Lemma 3.2

Our optimal retirement problem is the optimal retirement problem formulated by

Φ(x) ≡ max
τ

Jτ (x),

where

Jτ (x) ≡ max
(c,π)

E
[ ∫ τ

0
e−(β+δ)t

{
ln c(t) + δU2

(
X(t)

)}
dt+ e−(β+δ)τU2

(
X(τ)

)]
,

for a fixed stopping time τ . We denote c∗(t) and π∗(t) by optimal consumption and risky

portfolio strategies, respectively. We define the partial differential operator L as follows:

L =
∂

∂t
+

(
rx− c∗(t) + I1 + π∗(t)σθ

) ∂

∂x
+

1

2
π∗(t)2σ2

∂2

∂x2
.

We define the domains G and D as the following:

G = {(x, t) ∈ R×R;x ≥ 0, t ≥ 0}

and

D = {(x, t) ∈ G; ϕ̃(x, t) > e−(β+δ)tU2(x)}
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for a function ϕ̃ : G→ R. Then the following relationship holds:

Lϕ̃+ e−(β+δ)t
{
ln c∗(t) + δU2(x)

}
=
∂ϕ̃

∂t
+

(
rx− c∗(t) + I1 + π∗(t)σθ

)∂ϕ̃
∂x

+
1

2
π∗(t)2σ2

∂2ϕ̃

∂x2
+ e−(β+δ)t

{
ln c∗(t) + δU2(x)

}
.

Now we derive variational inequalities given in (10). Following Bensoussan and Lions (1982),

and Øksendal (2007), the function ϕ̃ satisfies the following variational inequalities:

Lϕ̃+ e−(β+δ)t
{
ln c∗(t) + δU2(x)

}
= 0 on D,

Lϕ̃+ e−(β+δ)t
{
ln c∗(t) + δU2(x)

}
≤ 0 on G\D.

As a result, the above variational inequalities are equivalent to the following:

Lϕ̃+ e−(β+δ)t
{
ln c∗(t) + δU2(x)

}
≤ 0,

ϕ̃(x, t) ≥ e−(β+δ)tU2(x),[
Lϕ̃+ e−(β+δ)t

{
ln c∗(t) + δU2(x)

}](
ϕ̃(x, t)− e−(β+δ)tU2(x)

)
.

(19)

We conjecture the form of ϕ̃ as

ϕ̃(x, t) = e−(β+δ)tϕ(x).

Substituting the above conjectured ϕ̃ into the inequalities given in (19), we get[
− (β + δ)ϕ(x) +

(
rx− c∗(t) + I1 + π∗(t)σθ

)
ϕ′(x)

+
1

2
π∗(t)2σ2ϕ′′(x) + ln c∗(t) + δU2(x)

]
≤ 0,

ϕ(x) ≥ U2(x),[
− (β + δ)ϕ(x) +

(
rx− c∗(t) + I1 + π∗(t)σθ

)
ϕ′(x)

+
1

2
π∗(t)2σ2ϕ′′(x) + ln c∗(t) + δU2(x)

](
ϕ(x)− U2(x)

)
= 0.

Note that optimality conditions for consumption and risky portfolio are given by

c∗(t) =
1

ϕ′(x)
and π∗(t) = − θ

σ

ϕ′(x)

ϕ′′(x)
,

which completes the proof of Lemma 3.2.
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6.3 Proof of Lemma 3.3

We introduce a dual variable λ, which is defined as the marginal value of the value function

ϕ(x). Further, the critical wealth level x̂ over which it is optimal for an individual to enter

voluntary retirement has an inverse relation with the dual variable λ. More specifically,

λ(x) ≡ ϕ′(x) and λ ≡ 1

β

1

x̂+ I2/r
.

We recall the nonlinear differential equation given in (11):

(β + δ)ϕ(x)− (rx+ I1)ϕ
′(x) +

θ2

2

ϕ′(x)2

ϕ′′(x)
+ 1 + lnϕ′(x) = δU2(x),

for any initial wealth 0 ≤ x < x̂. Differentiating the above equation with respect to x yields

λ(x)(θ2 + β + δ − r) +
λ′(x)

λ(x)
− λ′(x)(rx+ I1)−

1

2
θ2λ(x)2

λ′′(x)

λ′(x)2
=
δ

β

1

x+ I2/r
. (20)

We also introduce a function G that is called the convex-dual function of the value function

ϕ:

G
(
λ(x)

)
≡ x+

I1
r
,

which yields the following relationships:

G′(λ(x))λ′(x) = 1 and G′′(λ(x))λ′(x)2 +G′(λ(x))λ′′(x) = 0.

For the notational simplicity, we let G
(
λ(x)

)
= G and λ(x) = λ. Then the (20) is written by

using the convex-dual function G: for any λ < λ < λ̄

λ(θ2 + β + δ − r) +
1

λ

1

G′ −
rG

G′ +
1

2
θ2λ2

G′′

G′ =
δ

β

1

G− I1/r − I2/r
.

Rearranging this, we obtain the nonlinear equation given by (12) in Lemma 3.3.

6.4 Proof of Theorem 3.1

We can always write the general solution G to the nonlinear equation (12) as follows:

G(λ) =
1

λ(β + δ)
+A(λ)λ−αδ +A∗(λ)λ−α∗

δ , (21)

subject to

A′(λ)λ−αδ + (A∗(λ))′λ−α∗
δ = 0.
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The first and second derivatives of G are given by

G′(λ) = − 1

λ2
1

β + δ
− αδA(λ)λ

−αδ−1 − α∗
δA

∗(λ)λ−α∗
δ−1

and

G′′(λ) =
2

λ3
1

β + δ
+ αδ(αδ + 1)λ−αδ−2A(λ) + α∗

δ(α
∗
δ + 1)λ−α∗

δ−2A∗(λ)

− αδλ
−αδ−1A′(λ)− α∗

δλ
−α∗

δ−1(A∗(λ))′,

respectively. By using the general solution G and its first and second derivatives, we get the

following relationship:

− 1

2
θ2λ2G′′(λ)− λG′(λ)(θ2 + β + δ − r) + rG(λ)

=
1

λ
+
θ2

2

(
αδ − α∗

δ

)
λ1−αδA′(λ).

Using this we show that from the nonlinear equation (12)

θ2

2
(αδ − α∗

δ)λ
1−αδA′(λ) = − δ

β

G′(λ)

G(λ)− I1
r + I2

r

and
θ2

2
(αδ − α∗

δ)λ
1−α∗

δ (A∗(λ))′ =
δ

β

G′(λ)

G(λ)− I1
r + I2

r

.

Then we get

A(λ) = A(λ)− 2δ

θ2(αδ − α∗
δ)β

∫ λ

λ

µαδ−1G′(µ)

G(µ)− I1
r − I2

r

dµ

and

A∗(λ) = A∗(λ̄)− 2δ

θ2(αδ − α∗
δ)β

∫ λ̄

λ

µα
∗
δ−1G′(µ)

G(µ)− I1
r − I2

r

dµ.

Hence, the general solution G given by (21) can be restated as

G(λ) =
1

λ(β + δ)
+A(λ)λ−αδ +A∗(λ̄)λ−α∗

δ − 2δ

θ2(αδ − α∗
δ)β

[
λ−αδ

∫ λ

λ

µαδ−1G′(µ)

G(µ)− I1
r − I2

r

dµ

+ λ−α∗
δ

∫ λ̄

λ

µα
∗
δ−1G′(µ)

G(µ)− I1
r − I2

r

dµ
]
.

(22)

Using the following relationship

G′(µ)

G(µ)− I1
r + I2

r

=
d

dµ
ln

{
β
(
G(µ)− I1

r
+
I2
r

)}
,
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we can rewrite the general solution (22) as follows:

G(λ) =
1

λ(β + δ)
+A(λ)λ−αδ +A∗(λ̄)λ−α∗

δ

− 2δ

θ2(αδ − α∗
δ)β

[
λ−αδλαδ−1 ln

{
β
(
G(λ)− I1

r
+
I2
r

)}
− λ−αδλαδ−1 ln

1

λ

− λ−αδ

∫ λ

λ
(αδ − 1)µαδ−2 ln

{
β
(
G(µ)− I1

r
+
I2
r

)}
dµ

+ λ−α∗
δ λ̄α

∗
δ−1 ln

(
β
I2
r

)
− λ−α∗

δ λ̄α
∗
δ−1 ln

{
β
(
G(λ̄)− I1

r
+
I2
r

)}
dµ

− λ−α∗
δ

∫ λ̄

λ
(α∗

δ − 1)µα
∗
δ−2 ln

{
β
(
G(µ)− I1

r
+
I2
r

)}
dµ

]
.

When we define

B(λ) ≡ A(λ)− 2δ

θ2(αδ − α∗
δ)
λαδ−1 ln

{
β
(
G(λ)− I1

r
+
I2
r

)}
+

2δ

θ2(αδ − α∗
δ)β

λαδ−1 ln
1

λ
,

B∗(λ̄) ≡ A∗(λ̄)− 2δ

θ2(αδ − α∗
δ)β

λ̄α
∗
δ−1 ln

(
β
I2
r

)
+

2δ

θ2(αδ − α∗
δ)β

λ̄α
∗
δ−1 ln

{
β
(
G(λ̄)− I1

r
+
I2
r

)}
,

we obtain the analytic solution G proposed by (13).

6.5 Proof of Theorem 3.2

When we derive the variational inequality (10), we have used the following optimality condi-

tions for consumption and risky investment:

c∗(t) =
1

ϕ′(x)
and π∗(t) = − θ

σ

ϕ′(x)

ϕ′′(x)
.

Recall the following relations between the marginal value ϕ′(x) of the value function ϕ(x) and

the convex-dual function G(λ):

λ(x) = ϕ′(x) and G
(
λ(x)

)
= x+

I1
r
.

Using these relations we rewrite the optimality conditions in terms of G(λ)

c∗(t) =
1

λ∗(x)
and π∗(t) = − θ

σ
λ∗(x)G′(λ∗(x)).

Also, utilizing the general solution G given by (13) yields

x+
I1
r

= G
(
λ∗(x)

)
=

1

λ∗(x)(β + δ)
+B(λ)λ∗(x)−αδ +B(λ̄)λ∗(x)−α∗

δ

+
2δ

θ2(αδ − α∗
δ)β

[
(αδ − 1)λ∗(x)−αδ

∫ λ∗(x)

λ
µαδ−2 ln

{
β
(
G(µ)− I1

r
+
I2
r

)}
dµ

+ (α∗
δ − 1)λ∗(x)−α∗

δ

∫ λ̄

λ∗(x)
µα

∗
δ−2 ln

{
β
(
G(µ)− I1

r
+
I2
r

)}
dµ

]
.
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Rearranging this gives the optimal consumption c∗(t) given in Theorem 3.2. A direct calcu-

lation of the first derivative of G gives

G′(λ∗(x)
)
= −

1

λ∗(x)2(β + δ)
− αδB(λ)λ∗(x)−αδ−1 − α∗

δB
∗(λ̄)λ∗(x)−α∗

δ−1 +
2δ

θ2β
ln

{
β
(
G
(
λ∗(x)

)
−

I1

r
+

I2

r

)}
−

2δ

θ2(αδ − α∗
δ)β

[
αδ(αδ − 1)λ∗(x)−αδ−1

∫ λ∗(x)

λ
µαδ−2 ln

{
β
(
G(µ)−

I1

r
+

I2

r

)}
dµ

+ α∗
δ(α

∗
δ − 1)λ∗(x)−α∗

δ−1

∫ λ̄

λ∗(x)
µαδ−2 ln

{
β
(
G(µ)−

I1

r
+

I2

r

)}
dµ

]
.

Substituting this into the optimality condition π∗(t) completes the proof of Theorem 3.2.

Note that we can get an upper bound of the optimal risky asset holdings when the indi-

vidual is about to retire and a lower bound when she becomes extremely poor:

limx↑x̂ π(t) ≤
θ

σ

1

λ(β + δ)
+
θ

σ
αδB(λ)λ−αδ +

θ

σ
α∗
δB

∗(λ̄)λ−α∗
δ +

2δ lnλ

σθβλ

( αδ

αδ − α∗
δ

)
−

2δα∗
δ lnλ

σθβ(αδ − α∗
δ)
λ−α∗

δ λ̄α
∗
δ−1.

Moreover,

lim
x↓0
π(t) ≥ θ

σ

1

λ̄(β + δ)
+
θ

σ
αδB(λ)λ̄−αδ +

θ

σ
α∗
δB

∗(λ̄)λ̄−α∗
δ +

2δ

σθβλ̄
ln

(βI2
r

) α∗
δ

αδ − α∗
δ

− 2δαδ

σθβ(αδ − α∗
δ)

ln
(βI2
r

)
λ̄−αδλαδ−1.

To verify this, we first use the inequality

G(µ)− I1
r

+
I2
r

≤ 1

βλ
,

and take the limit of λ∗ ↓ λ to derive the last term of the right hand side of the first

inequality. The last term of the right hand side of the second inequality can be derived if we

use G(µ) ≥ 0 for all µ and take the limit of x ↓ 0.

6.6 The Details of Deriving the Value Function Ψ(x)

We know that

Ψ(x) = max
τc

ψτc(x),

where ψτc is defined as

ψτc(x) ≡ max
(c,π,X)

E
[ ∫ τc

0
e−(β+δ)t

{
ln c(t) + δU2

(
X(t)

)}
dt+ e−(β+δ)τcU2

(
X(τ c)

)]
.
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The optimal stopping problem Ψ(x) = maxτc ψτc(x) is equivalent to solving the variational

inequality (Bensoussan and Lions, 1982; Øksendal, 2007)

(β + δ)φ(x)− (rx+ I1 + δ
I2
r
)φ′(x) +

θ2

2

φ′(x)2

φ′′(x)
+ 1 +

δ

β
+ (1 +

δ

β
) lnφ′(x)

− δ

β2
(r +

θ2

2
− β(1− lnK)) ≥ 0,

φ(x) ≥ U2(x).

Here, we utilized the optimality conditions with respect to c, π, and X, respectively:

c∗ =
1

φ′(x)
, π∗ = −1

x

θ

σ

φ′(x)

φ′′(x)
, X

∗
=

1

βφ′(x)
− I2

r
. (23)

Thus, we construct a problem with one free boundary from the above inequality

(β + δ)φ(x)− (rx+ I1 + δ
I2
r
)φ′(x) +

θ2

2

φ′(x)2

φ′′(x)
+ 1 +

δ

β
+ (1 +

δ

β
) lnφ′(x)

− δ

β2
(r +

θ2

2
− β(1− lnK)) = 0, 0 ≤ x < x̂c,

φ(x) = U2(x), x ≥ x̂c,

φ(x̂) = U2(x̂
c),

φ′(x̂) =
1

β

1

x̂c + I2/r
,

(24)

where x̂c is the critical wealth level to be determined in a complete market innovated by

introduction of private unemployment insurance. We use the conventional convex-duality

method, and subsequently, use the convex-dual function φ̃(y) defined as

φ(x) = inf
y∈R

{φ̃(y) + xy}.

Then the free boundary problem (24) is rewritten as

θ2

2
y2φ̃′′(y) + {β + δ − r − δ}yφ̃′(y)− (β + δ)φ̃(y) + C(y) = 0, for y < y < y, (25)

with boundary conditions with respect to two boundaries y, y

φ̃(y) = − 1

β
ln y +

I2
r
y +

1

β

{ 1

β

(
r +

θ2

2
− β(1− lnK)

)
− 1

}
,

φ̃′(y) = − 1

βy
+
I2
r
,

φ̃′(y) = 0,

φ̃′′(y) = 0,

(26)
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and C(y) is defined as

C(y) ≡
(
I1 +

δI2
r

)
y − (1 +

δ

β
) ln y − 1− δ

β
+

δ

β2
{r + θ2

2
− β(1− lnK)}.

The variation of parameter method yields the general solution to ODE (25)

φ̃(y) = A1y
n1 +A2y

n2 + φ̃p(y),

where A1, A2 are constants to be determined, and

n1 =
−
(
β + δ − r − δ − θ2

2

)
+

√(
β + δ − r − δ − θ2

2

)2
+ 2(β + δ)θ2

θ2
,

n2 =
−
(
β + δ − r − δ − θ2

2

)
−

√(
β + δ − r − δ − θ2

2

)2
+ 2(β + δ)θ2

θ2
,

φ̃p(y) =
(
I1 +

δI2
r

) 1(
r + δ

)y − 1

β
ln y − 1

θ2β

(β + δ

r + δ
− 1

)
− 1

β(β + δ)

{
1 +

δ

β
− δ

β

(
r +

θ2

2
− β(1− lnK)

)}
.

From the boundary conditions in (26) we obtain two equations[
− n2

β
ln y +

I2
r
y(n2 − 1) +

n2
β

{ 1

β

(
r +

θ2

2
− β(1− lnK)

)
− 1

}
+

1

β
− n2φ̃p(y)

+yφ̃′
p(y)

]
n1(n2 − 1)yn1−1 =

(
− (n2 − 1)φ̃p(y) + yφ̃′′

p(y)
)
(n2 − n1)y

n1 ,[
− n1

β
ln y +

I2
r
y(n1 − 1) +

n1
β

{ 1

β

(
r +

θ2

2
− β(1− lnK)

)
− 1

}
+

1

β
− n1φ̃p(y)

+yφ̃′
p(y)

]
n2(n1 − 1)yn2−1 =

(
− (n1 − 1)φ̃p(y) + yφ̃′′

p(y)
)
(n1 − n2)y

n2 .

(27)

y and ȳ are determined numerically, and then A1 andA2 are easily obtained from the boundary

conditions in (26).

The optimality conditions (23) give optimal consumption c∗ and risky investment π∗. The

critical wealth level x̂c is derived from the relationship φ′(x̂) =
1

β

1

x̂+ I2/r
in (24).

6.7 The Iterative Method

The value-matching condition of ϕ(x̂) = U2(x̂) in the free boundary problem (11) yields

lnK = λ(I1 − I2)
(
1 +

θ2α∗
δ

2r

)
+
δ

β
lnλ+

θ2(αδ − α∗
δ)

2
B(λ)λ−αδ+1. (28)
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Firstly, we will show that the equation (28) can be followed by the value-matching condition

at λ = λ, or equivalently at x = x̂. Rearranging the first equation in (11) we get an equality

concerning ϕ(x)

(β + δ)ϕ(x) = (rx+ I1)λ(x)−
θ2

2
λ2(x)G′(λ(x))− (

1 + lnλ(x)
)
+ δU2(x). (29)

If we let

H(λ) ≡ 1

(β + δ)

[
rG(λ)λ− θ2

2
λ2G′(λ)− (1 + lnλ)

+
δ

β

{
ln

{
G(λ)− I1

r
+
I2
r

}
+

1

β

(
r +

θ2

2
− β(1− lnK)

)}]
,

(30)

then

ϕ(x) = H
(
λ(x)

)
. (31)

Equations (12) and (30) yield

H ′(λ) = λG′(λ),

so that

ϕ′(x) = H ′(λ(x))λ′(x) = H ′(λ(x))

G′(λ(x))
= λ(x).

Therefore, ϕ(x) is a solution of the first equation in (11) subject to a boundary condition

ϕ′(x̂) = λ(x̂) = λ =
1

β

1

x̂+ I2
r

.

Using the value-matching condition

ϕ(x̂) = U2(x̂)

in (11), we obtain the value of H at λ = λ̂

H(λ) =
1

β

[
ln

1

λ
+

1

β

(
r +

θ2

2
− β(1− lnK)

)]
. (32)

Therefore, we get

(β + δ)
1

β

[
ln

1

λ
+

1

β

(
r +

θ2

2
− β(1− lnK)

)]
= rλ

( 1

βλ
+
I1 − I2
r

)
− θ2

2
λ2G′(λ)

− (1 + lnλ) +
δ

β

[
ln

1

λ
+

1

β

(
r +

θ2

2
− β(1− lnK)

)] (33)

if we rearrange the relationship (30) and rewrite it at the boundary λ = λ.
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The smooth-pasting condition of ϕ′(x̂) =
1

β

1

x̂+ I2/r
in the free boundary problem (11)

can be rewritten by using the free boundary λ:

λ =
1

β

1

x̂+ I2/r
,

accordingly

x̂ =
1

βλ
− I2

r
.

Utilizing the general solution G given by (13) we obtain

x̂+
I1
r

= G(λ),

which can be restated as

1

βλ
+
I1 − I2
r

=
1

λ(β + δ)
+B(λ)λ−αδ +B∗(λ̄)λ−α∗

δ

+
2δ(α∗

δ − 1)λ−α∗
δ

θ2(αδ − α∗
δ)β

∫ λ̄

λ
µα

∗
δ−2 ln

{
β
(
G(µ)− I1

r
+
I2
r

)}
dµ.

(34)

Now we use the value-matching and smooth-pasting conditions of the value function ϕ(x) at

zero wealth level. The value-matching condition is given as follows: if we let λ̄ = ϕ′(0), then

G(λ̄) =
I1
r
,

which can be rewritten by

I1
r

=
1

λ̄(β + δ)
+B(λ)λ̄−αδ +B∗(λ̄)λ̄−α∗

δ +
2δ(αδ − 1)λ̄−αδ

θ2(αδ − α∗
δ)β

∫ λ̄

λ
µαδ−2 ln

{
β
(
G(µ)− I1

r
+
I2
r

)}
dµ.

(35)

The smooth-pasting condition is given by the fact that if an individual’s initial wealth ap-

proaches zero, then the individual optimally has zero risky investment position. Technically,

the fact is represented by

G′(λ̄) = 0,

because of the optimality condition for risky investment is given by

π∗(t) = − θ

σ
λ∗(x)G′(λ∗(x)).

As a result, we get

0 = − 1

λ̄2(β + δ)
− αδB(λ)λ̄−αδ−1 − α∗

δB
∗(λ̄)λ̄−α∗

δ−1 +
2δ

θ2βλ̄2
ln

(
β
I2
r

)
− 2δαδ(αδ − 1)λ̄−αδ−1

θ2(αδ − α∗
δ)

∫ λ̄

λ
µαδ−2 ln

{
β
(
G(µ)− I1

r
+
I2
r

)}
dµ.

(36)
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Combining (34), (35), and (36), we can derive the equation (28).

A little rearrangement of second and third equality in (35) and (36), respectively, gives

αδ − 1

β + δ
+

2δ

θ2β
ln

(
β
I2
r

)
=
αδI1
r

λ̄− (αδ − α∗
δ)B

∗(λ̄)λ̄−α∗
δ+1. (37)

Then from the relationships of (28) and (37), we can rewrite B(λ) and B∗(λ̄) as functions of

λ and λ̄, respectively. By substituting B(λ) and B∗(λ̄) into the equations given in (34) and

(35), we finally get the following two equations:

I1 − I2
r

+ (I1 − I2)
(
1 +

θ2α∗
δ

2r

) 2

θ2(αδ − α∗
δ)

=
1

λ(β + δ)
− 1

βλ
+
{ lnK

λ
− δ lnλ

βλ

} 2

θ2(αδ − α∗
δ)

+
[αδI1
rλ̄

−
{αδ − 1

β + δ
+

2δ

θ2β
ln
(
β
I2
r

)} 1

λ̄2

] 1

(αδ − α∗
δ)

( λ̄
λ

)α∗
δ

λ̄

+
2δ(α∗

δ − 1)λ−α∗
δ

θ2(αδ − α∗
δ)β

∫ λ̄

λ

µα∗
δ−2 ln

{
β
(
G(µ)− I1

r
+
I2
r

)}
dµ

(38)

−I1
r

α∗
δ

(αδ − α∗
δ)

=
1

λ̄(β + δ)
+
{
lnK − (I1 − I2)

(
1 +

θ2α∗
δ

2r

)
λ− δ

β
lnλ

} 2

θ2(αδ − α∗
δ)

(λ
λ̄

)αδ 1

λ

−
[{αδ − 1

β + δ
+

2δ

θ2β
ln
(
β
I2
r

)} 1

λ̄

] 1

(αδ − α∗
δ)

+
2δ(αδ − 1)λ̄−αδ

θ2(αδ − α∗
δ)β

∫ λ̄

λ

µαδ−2 ln
{
β
(
G(µ)− I1

r
+
I2
r

)}
dµ.

(39)

Our problem reduces to numerically determine two free boundaries λ and λ̄ in (38) and

(39).

Now we present an iterative method to show graphical illustration of our main results

given in Theorem 3.2.

The iterative procedure

• (Step 0) Notice that, if δ = 0, we easily get B(λ) from (28) and B∗(λ̄) from (37). Then

we obtain G(λ) from (13). Putting the G(λ) into two equations in (38) and (38), we

get λ and λ̄. Suppose δ ̸= 0, but has a sufficiently small value.23 We exploit G(λ), λ

and λ̄ for the case in which δ = 0 as the initial values of our iteration method.
23This condition of δ is necessary in order to guarantee the uniqueness and monotonicity of the solution of

(13) and to verify the fact that the solution obtained from the new convex-dual approach is a solution of the

free boundary problem (11). We display the possible range of δ in Theorem 6.1, 6.2 in Appendix.
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• (Step 1) Since we have initial values λ, λ̄ and G(λ), we get B(λ) and B∗(λ̄) from (28)

and (37), respectively.

• (Step 2) Update G(λ) by using the equation (13).

• (Step 3) Putting the updated G(λ) into the equations in (38) and (39), we obtain new

λ and λ̄.

• (Step 4) Repeat steps 1, 2 and 3 until λ and λ̄ converge.

6.8 Various Properties of Convex-Dual Function G

6.8.1 Uniqueness of the Solution of (13)

Theorem 6.1 (Uniqueness) If
2δ

θ2β

(λ̄− λ)

λ λ̄
< 1, the solution of (13) is unique.

Proof. Let G1 and G2 be the two solutions of (13), then we get

G1(λ)−G2(λ) =
2δ

θ2(αδ − α∗
δ)β

[
(αδ − 1)λ−αδ

∫ λ

λ
µαδ−2

(
ln

{
β
(
G1(µ)−

I1
r

+
I2
r

)}
− ln

{
β
(
G2(µ)−

I1
r

+
I2
r

)})
dµ

+ (α∗
δ − 1)λ−α∗

δ

∫ λ̄

λ
µα

∗
δ−2

(
ln

{
β
(
G1(µ)−

I1
r

+
I2
r

)}
− ln

{
β
(
G2(µ)−

I1
r

+
I2
r

)})
dµ

]
.

We know that∣∣∣ ln{β(G1(µ)−
I1
r

+
I2
r

)}
− ln

{
β
(
G2(µ)−

I1
r

+
I2
r

)}∣∣∣ ≤ |G1(µ)−G2(µ)|,

and it implies

|G1(λ)−G2(λ)| ≤
2δ

θ2β

(λ̄− λ)

λ λ̄
sup
µ

|G1(µ)−G2(µ)|.

Hence, the proof is complete. Q.E.D.

6.8.2 The Strictly Decreasing Property of Convex-Dual Function G

The following theorem permits us to get a monotonically decreasing G(λ) under suitable

parameter conditions.
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Theorem 6.2 (Monotonicity) Suppose that

lnK > λ(I1 − I2)
(
1 +

θ2α∗
δ

2r

)
+
δ

β
lnλ,

αδ(α
∗
δ − 1)

(α∗
δ − αδ)(β + δ)

>
2δ

θ2β

{
ln

( 1
λ

)
−

α∗
δ

(α∗
δ − αδ)

ln
(
β
I2
r

)}
+

αδα
∗
δI1

(α∗
δ − αδ)r

λ̄,
(40)

Then, any solution of (13) satisfies G′(λ) < 0.

Proof. Any solution of (12) satisfies the integral equation (13). From (28) and the first

assumption of Theorem 6.2, we deduce

B(λ)λ1−αδ =
[
lnK − λ(I1 − I2)

(
1 +

θ2α∗
δ

2r

)
− δ

β
lnλ

] 2

θ2(αδ − α∗
δ)
> 0.

We compute G′(λ)

G′(λ) = − 1

λ2(β + δ)
− αδB(λ)λ−αδ−1 − α∗

δB
∗(λ̄)λ−α∗

δ−1 +
2δ

θ2β
ln
{
β
(
G(λ)− I1

r
+
I2
r

)}
− 2δ

θ2(αδ − α∗
δ)β

[
αδ(αδ − 1)λ−αδ−1

∫ λ

λ

µαδ−2 ln
{
β
(
G(µ)− I1

r
+
I2
r

)}
dµ

+ α∗
δ(α

∗
δ − 1)λ−α∗

δ−1

∫ λ̄

λ

µαδ−2 ln
{
β
(
G(µ)− I1

r
+
I2
r

)}
dµ

]
≤ −αδB(λ)λ−αδ−1 − 1

λ2

[ αδ(α
∗
δ − 1)

(α∗
δ − αδ)(β + δ)

− 2δ

θ2β

{
ln

( 1

λ

)
− α∗

δ

(α∗
δ − αδ)

ln
(
β
I2
r

)}
− αδα

∗
δI1

(α∗
δ − αδ)r

λ̄
]
,

where we have used the relationship (37) and the fact that

I2
r

≤ G(λ)− I1
r

+
I2
r

≤ 1

βλ
, for λ ≤ λ ≤ λ̄

to obtain the last inequality. Therefore, we conclude that G′(λ) < 0. Q.E.D.

6.8.3 The Equivalence between the Problem (11) and the Variational Inequality

(10)

If we find ϕ(x) satisfying the variational inequality (10), then the ϕ(x) certainly is a solution

to the free boundary problem (11). Hence, now we verify that the solution ϕ(x) of the problem

(11) is a solution of the variational inequality (10).

Theorem 6.3 If we take the assumption of (40) and further assume that

λ ≤ lnK/(I1 − I2), λ̄ <
r

βI2
,

then the solution ϕ(x) of the problem (11) is a solution of the variational inequality (10).
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Proof. Define

f(x) ≡ ϕ(x)− U2(x).

From ϕ(x̂) = U2(x̂), f(x̂) = 0. If we show that f ′(x) ≤ 0 for 0 ≤ x ≤ x̂, then the second

inequality in (10) will follow. To do this, it is enough to show that

G(λ) <
1

βλ
+
I1 − I2
r

, (41)

for λ < λ < λ̄. Let

Γ(λ) ≡ G(λ)− 1

βλ
− I1 − I2

r
.

Then Γ(λ) = 0 because G(λ) =
1

βλ
+
I1 − I2
r

and Γ(λ̄) = − 1

βλ̄
+
I2
r
< 0 by the assumption

of Theorem 6.3. From the equality in (12),

−1

2
θ2λ2Γ′′(λ)− λΓ′(λ)(θ2 + β + δ − r) + rΓ(λ) +

δ

β

Γ′(λ)

Γ(λ) + 1
βλ

= − δ

βλ
− (I1 − I2) +

δ

β2
1

Γ(λ) + 1
βλ

1

λ2
.

(42)

Because we take the assumption of (40), G′(λ) < 0, i.e., G(λ) is monotonic decreasing, as a

result,
1

Γ(λ) + 1
βλ

=
1

G(λ)− (I1 − I2)/r
≤ r

I2
.

Then the right-hand side of (42) satisfies the inequality

− δ

βλ
− (I1 − I2) +

δ

β2
1

Γ(λ) + 1
βλ

1

λ2

≤ − δ

βλ

(
1− r

I2

1

βλ

)
− (I1 − I2)

≤ − δ

βλ

(
1− r

I2

1

βλ̄

)
− (I1 − I2)

< − δ

βλ

(
1− r

I2

I2
r

)
− (I1 − I2) < 0.

Applying the comparison principle of Friedman (1982) to (42) we get Γ(λ) < 0 for λ < λ < λ̄,

which is equivalent to (41).

Now we verify the first inequality in (10). The case in which 0 ≤ x < x̂ is trivial. For

x ≥ x̂, we obtain the equality

(β + δ)ϕ(x)− (rx+ I1)ϕ
′(x) +

θ2

2

ϕ′(x)2

ϕ′′(x)
+ 1 + lnϕ′(x)− δU2(x)

= − I1 − I2

β(x+ I2
r )

+ lnK,
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because ϕ(x) = U2(x). The term − I1 − I2

β(x+ I2
r )

+ lnK is monotonic increasing function of x,

so the assumption λ ≤ lnK/(I1 − I2) gives

− I1 − I2

β(x+ I2
r )

+ lnK ≥ 0.

Q.E.D.

6.8.4 Convergence of the Iterative Procedure

We show that the approximate function G(·) obtained from the iterative procedure converges

to the implicit equation (13) by using the Banach fixed-point theorem.

Consider a domain X = [λ, λ̄] of λ(·). We denote R by the set of real numbers and

B(X,R) by the set of all bounded functions g : X → R. Because R is complete, so B(X,R)

with the supremum norm

d(g, h) ≡ sup{|g(x)− h(x)| : x ∈ X}

is a complete metric space. Let C(X,R) be the set of all continuous bounded functions

f : X → R. Then C(X,R) is a closed subspace of B(X,R), so that C(X,R) is also a complete

metric space. Thus, the continuous and decreasing function G(λ), which is a solution to the

differential equation (12) satisfying

I1
r

≤ G(λ) ≤ 1

βλ
+
I1 − I2
r

should be in C(X,R).

Define for any G(λ) ∈ C(X,R)

T
(
G(λ)

)
≡ 1

λ(β + δ)
+B(λ)λ−αδ +B∗(λ̄)λ−α∗

δ

+
2δ

θ2(αδ − α∗
δ)β

[
(αδ − 1)λ−αδ

∫ λ

λ
µαδ−2 ln

{
β
(
G(µ)− I1

r
+
I2
r

)}
dµ

+(α∗
δ − 1)λ−α∗

δ

∫ λ̄

λ
µα

∗
δ−2 ln

{
β
(
G(µ)− I1

r
+
I2
r

)}
dµ

]
.

Then T is continuous and is in C(X,R) from

|T
(
G(λ)

)
| ≤ 2δ

θ2β

(λ̄− λ)

λ λ̄
sup
λ

|T
(
G(λ)

)
|.

If we assume that
2δ

θ2β

(λ̄− λ)

λ λ̄
< 1,

46



then T : C(X,R) → C(X,R) is a contraction mapping. This is because for anyG1(λ), G2(λ) ∈

C(X,R), T satisfies

sup
λ

|T
(
G1(λ)

)
− T

(
G2(λ)

)
| = 2δ

θ2β

(λ̄− λ)

λ λ̄
sup
λ

|G1(λ)−G2(λ)|.

Let Gi(λ) be a function and Bi(λi), B
∗
i (λ̄i), λi, λ̄i be the constants obtained from i-th

iteration. We verify that Gi(λ) converges uniformly to G(λ) on [λ, λ̄] by the Banach fixed-

point theorem. Then clearly we have that Bi(λi) → B(λ), B∗
i (λ̄i) → B∗(λ̄), λi → λ, and

λ̄i → λ̄ as i→ ∞.
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δ \ x x̂− 45 x̂− 40 x̂− 35 x̂− 30 x̂− 25 x̂− 20 x̂− 15 x̂− 10 x̂− 5 x̂

0 0.5918 0.7787 0.9490 1.1103 1.2657 1.4168 1.5646 1.7097 1.8526 1.9936

0.005 0.4946 0.6927 0.8681 1.0326 1.1903 1.3434 1.4927 1.6391 1.7831 1.9250

0.006 0.4922 0.6901 0.8654 1.0299 1.1878 1.3408 1.4902 1.6367 1.7807 1.9227

0.007 0.4899 0.6876 0.8628 1.0274 1.1853 1.3384 1.4879 1.6344 1.7785 1.9204

0 28.9932 43.4261 56.6174 69.2027 81.4303 93.4243 105.2557 116.9686 128.5927 140.1485

0.005 22.0918 37.2083 50.6002 63.2734 75.5535 87.5893 99.4613 111.2181 122.8909 134.5011

0.006 22.0244 37.0867 50.4454 63.0975 75.3645 87.3928 99.2619 111.0193 122.6957 134.3120

0.007 21.9572 36.9664 50.2930 62.9247 75.1791 87.2004 99.0669 110.8252 122.5055 134.1282

Table 1: Optimal consumption (top table) and optimal risky investment (bottom table) as a

function of initial wealth x for several values of δ. The amounts of optimal consumption and risky

investment decrease as the intensity δ of forced unemployment increases. Importantly, individuals could be

significantly affected by risk of forced unemployment even if the possibility of unemployment is very small.

Default parameter values: β = 0.0371 (subjective discount rate), r = 0.0371 (risk-free interest rate), µ = 0.1123

(expected rate of stork returns), σ = 0.1954 (stock volatility), I1 = 1 (labor income), and I2 = 0.10 (post-

retirement income).

µ σ K

δ 0.1023 0.1123 0.1223 0.1854 0.1954 0.2054 2 3 4

0 47.4590 51.1636 54.5313 52.5721 51.1636 49.8445 90.0721 51.1636 37.8977

0.005 46.0740 49.7891 53.1892 51.2084 49.7891 48.4632 87.1063 49.7891 37.0099

0.006 45.8201 49.5342 52.9377 50.9543 49.5342 48.2083 86.5632 49.5342 36.8440

0.007 45.5731 49.2850 52.6911 50.7057 49.2850 47.9592 86.0340 49.2850 36.6814

Table 2: Critical wealth levels x̂ for various parameter values of µ, σ, K, and δ.

The critical wealth level at which an individual chooses to retire increases as expected return

rates increase or as stock volatility decreases (or both). Increase in preference for leisure after

retirement may have the opposite effect. Default parameter values: β = 0.0371 (subjective

discount rate), r = 0.0371 (risk-free interest rate), I1 = 1 (labor income), and I2 = 0.10

(post-retirement income).

52



µ σ K

Percentile of net worth 0.1023 0.1123 0.1223 0.1854 0.1954 0.2054 2 3 4

0-25 0.7978 0.5942 0.4433 0.5279 0.5942 0.6617 0.6617 0.5942 0.4917

25-49.9 0.2792 0.2105 0.1590 0.1878 0.2105 0.2334 0.2754 0.2105 0.1721

50-74.9 0.1571 0.1201 0.0919 0.1077 0.1201 0.1325 0.1606 0.1201 0.0964

75-89.9 0.0933 0.0723 0.0560 0.0652 0.0723 0.0794 0.1000 0.0723 0.0565

90-100 0.0606 0.0476 0.0374 0.0431 0.0476 0.0520 0.0687 0.0476 0.0359

Table 3: Reservation purchase price (RPP) to wealth ratio, ϵ(x)/x, for various parameter values

of µ, σ, and K. An individual’s RPP increases as her net worth decreases; this result implies that a

person with low net worth will pay much more to obtain insurance coverage than will a person with high net

worth. Default parameter values: δ = 0.005 (unemployment intensity), β = 0.0371 (subjective discount rate),

r = 0.0371 (risk-free interest rate), I1 = 1 (labor income), and I2 = 0.10 (post-retirement income).

µ σ K

Percentile of net worth 0.1023 0.1123 0.1223 0.1854 0.1954 0.2054 2 3 4

0-25 0.2489 0.1710 0.1171 0.1469 0.1710 0.1965 0.1965 0.1710 0.1374

25-49.9 0.0849 0.0592 0.0410 0.0510 0.0592 0.0676 0.0800 0.0592 0.0469

50-74.9 0.0461 0.0326 0.0230 0.0283 0.0326 0.0371 0.0451 0.0326 0.0254

75-89.9 0.0261 0.0188 0.0134 0.0164 0.0188 0.0212 0.0268 0.0188 0.0142

90-100 0.0162 0.0118 0.0086 0.0104 0.0118 0.0133 0.0175 0.0118 0.0087

Table 4: Individual welfare benefit (IWB) of market innovation to wealth ratio, ∇(x)/x, for

various parameter values of µ, σ, and K. The IWB decreases with an individual’s net worth; this trend

implies that the introduction of private unemployment insurance might increase drastically the welfare of the

poor. Default parameter values: δ = 0.005 (unemployment intensity), β = 0.0371 (subjective discount rate),

r = 0.0371 (risk-free interest rate), I1 = 1 (labor income), and I2 = 0.10 (post-retirement income).
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Figure 1: Optimal consumption to wealth ratio and risky investment to wealth

ratio as a function of initial wealth x for various expected rates µ of stock returns.

The amounts of optimal consumption and risky investment are expected to increase as an

individual’s wealth increases. Default parameter values: δ = 0.005 (unemployment intensity),

β = 0.0371 (subjective discount rate), r = 0.0371 (risk-free interest rate), σ = 0.1954 (stock

volatility), K = 3 (post-retirement leisure preference), I1 = 1 (labor income), and I2 = 0.10

(post-retirement income).
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Figure 2: Optimal consumption to wealth ratio and risky investment to wealth ratio

as a function of initial wealth x for various stock volatilities σ. Consumption and

investment ratios decrease more rapidly as the stock volatility increases. Default parameter

values: δ = 0.005 (unemployment intensity), β = 0.0371 (subjective discount rate), r = 0.0371

(risk-free interest rate), µ = 0.1123 (expected rate of stock returns), K = 3 (post-retirement

leisure preference), I1 = 1 (labor income), and I2 = 0.10 (post-retirement income).
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Figure 3: Optimal consumption to wealth ratio and risky investment to wealth ratio

as a function of initial wealth x for various post-retirement leisure preferences K.

Consumption decreases and investment in the risky asset increases as the individual’s leisure

demand increases. Default parameter values: δ = 0.005 (unemployment intensity), β = 0.0371

(subjective discount rate), r = 0.0371 (risk-free interest rate), µ = 0.1123 (expected rate of

stock returns), σ = 0.1954 (stock volatility), I1 = 1 (labor income), and I2 = 0.10 (post-

retirement income).
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Figure 4: Implicit value of income as a function of initial wealth x. The implicit value

of income increases as wealth increases up to a somewhat small level, then starts to decrease.

Default parameter values: β = 0.0371 (subjective discount rate), r = 0.0371 (risk-free interest

rate), µ = 0.1123 (expected rate of stock returns), σ = 0.1954 (stock volatility), K = 3 (post-

retirement leisure preference), I1 = 1 (labor income), and I2 = 0.10 (post-retirement income).
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Figure 5: Implicit value of income as a function of initial wealth x for various

parameter values of investment opportunity set (µ and σ). The relationship between

implicit value of income and investment opportunity reveals that the poor might prefer a

high risk premium from the stock investment over uninsurable or unhedgeable labor income,

whereas the opposite might be true for the rich who are about to retire. Default parameter

values: δ = 0.005 (unemployment intensity), β = 0.0371 (subjective discount rate), r = 0.0371

(risk-free interest rate), K = 3 (post-retirement leisure preference), I1 = 1 (labor income),

and I2 = 0.10 (post-retirement income).
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Figure 6: Implicit value of income as a function of initial wealth x for various values

of post-retirement leisure preferences K. As an individual’s post-retirement leisure

preference decreases, her willingness to delay retirement to increase utility gains from the labor

income increases. Default parameter values: δ = 0.005 (unemployment intensity) β = 0.0371

(subjective discount rate), r = 0.0371 (risk-free interest rate), µ = 0.1123 (expected rate of

stock returns), σ = 0.1954 (stock volatility), I1 = 1 (labor income), and I2 = 0.10 (post-

retirement income).
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Figure 7: Certainty equivalent wealth gain (CEWG) to wealth ratio, ∆(x)/x, for

various values of unemployment intensities δ. CEWG increases as δ increases. Default

parameter values: β = 0.0371 (subjective discount rate), r = 0.0371 (risk-free interest rate),

µ = 0.1123 (expected rate of stock returns), σ = 0.1954 (stock volatility), I1 = 1 (labor

income), and I2 = 0.10 (post-retirement income).
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Figure 8: Certainty equivalent wealth gain (CEWG) to wealth ratio, ∆(x)/x, for

various values of investment opportunity set (µ and σ). CEWG increases as expected

rate µ of stock returns decreases or stock volatility σ increases (or both). Default parameter

values: δ = 0.005 (unemployment intensity), β = 0.0371 (subjective discount rate), r = 0.0371

(risk-free interest rate), K = 3 (post-retirement leisure preference), I1 = 1 (labor income),

and I2 = 0.10 (post-retirement income).
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Figure 9: Certainty equivalent wealth gain (CEWG) to wealth ratio, ∆(x)/x, for

various post-retirement leisure preferences K. CEWG is sensitive to changes of K.

As an individual’s leisure demand K increases, the CEWG required to buffer against unem-

ployment risks increases. Default parameter values: δ = 0.005 (unemployment intensity),

β = 0.0371 (subjective discount rate), r = 0.0371 (risk-free interest rate), µ = 0.1123 (ex-

pected rate of stock returns), σ = 0.1954 (stock volatility), I1 = 1 (labor income), and

I2 = 0.10 (post-retirement income).

62



Figure 10: Family net worth and before-tax family income by percentile of net

worth from the SCF for the period 1995-2010. Both family net worth and before-tax

family income increase with percentile of net worth.
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