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Abstract

This paper develops the dynamic equilibrium model of capital structure and invest-

ment decisions of value and growth firms. Although Q ratio monotonically increases

with the share of growth options in total firm value, it is yet to be a perfect proxy of

growth options since Q ratio is also affected by a firm’s production technology. Capital-

intensive firms not only have higher returns from investments and thus larger growth

options but also likely have invested in more capital in the past. Thus, capital-intensive

firms may have lower Q ratio even when they have higher growth options. Under-

standing the intra- and inter-firm variations of Q ratio can explain why leverage and

profitability are important determinants of investment policy. The simulation also as-

sures that the model can successfully match the moments of riskfree interest rates, stock

market excess returns, value premium and credit spreads.
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1 Introduction

Tobin’s Q and the book-to-market equity (B/M) ratios are the most popular measures to

distinguish value and growth firms. The rationale behind these measures is simple. Firm

value consists of two components. One is assets-in-place, whose cashflows are generated

by the vested capital, and the other is growth options. Value firms are lacking in growth

options, thus they exhibit lower Q and higher B/M ratios.

However, this rationale overlooks one important mechanism. It implicitly assumes that

the assets-in-place and growth options are independent entities. The independence may be

true in a static model in which growth options can be exercised only once in a firm’s lifetime.

Static models assume that only young and small firms can exercise growth options to become

mature and large firms, and in this framework the growth options can be modelled as an

separate entity from assets-in-place.

In a dynamic model, however, growth options should be exercisable repeatedly. As a

firm’s productivity keeps growing, the firm should have been given growth options to make

new investments every time its productivity reaches the next upper restructuring threshold.

Growth firms do not have to be young. Furthermore, the structure of growth options would

also determine the relation between the value of assets-in-place and the vested capital.

Therefore, the growth options and the assets-in-place are not independent anymore.

Accounting for this mechanism, I find that neither the Tobin’s Q nor the B/M ratio is

a perfect proxy for growth options. For example, suppose there are two companies. Firm

A has no need to make investment. Its earnings grow by an exogenous process and thus

has no growth option. In comparison, Firm B is able to double production by investing

in capital, either in tangible or intangible assets. It has growth options and has repeated

investments during its lifetime. If we compare the Q ratio of the two firms, Firm A’s Q

would be infinitely large as it has not invested in capital. However, Firm B’s Q would be

much lower due to its repeated investments in the past.

This paper develops the dynamic equilibrium model of capital structure and investment

decisions of value and growth firms. Although Q ratio monotonically increases with the

share of growth options in total firm value, it is yet to be a perfect proxy of growth options

since Q ratio is also affected by a firm’s production technology. Capital-intensive firms

not only have higher returns from investments and thus larger growth options but also

likely have invested in more capital in the past. Thus, capital-intensive firms may have

lower Q ratio even when they have higher growth options. Understanding the intra- and
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inter-firm variations of Q ratio can explain why leverage and profitability are important

determinants of investment policy since the leverage and profitability can be used to adjust

for the inter-firm variations of the Q ratio.

To build a dynamic investment and capital structure model, I assume that firms make

refinancing and investment decisions altogether at the upper restructuring boundary. This

assumption is motivated by the empirical observation that firms, on average, issue debts

not to pay for cash dividends or share repurchases but to make investments in tangible and

intangible assets. Thanks to the tractability that is added to the model by the assumption,

I could derive closed-form solutions.

This paper makes three sets of contributions. First, the paper illustrates how a firm’s

production technology affects its debt policy. Capital-intensive firms grow through invest-

ments, thus they are more incentivized to protect investment options by taking on a more

conservative debt policy. The model shows that there is a monotonic relation between cap-

ital intensity and default probability. More capital-intensive firms are less likely to default.

For example, let α denote an inverse capital intensity. If α = 0.4, i.e., firms are capital-

intensive, the probability of default within the next 10 years after refinancing is 0.53%.

In comparison, the default probability increases to 1.55% for α = 0.8, i.e., firms have low

returns from investments.

However, the relation between capital intensity and leverage is not monotonic. As

Jermann (1998) and Kogan (2004) explain, capital-intensive firms can utilize investment

decisions to smooth earnings growth and thus reduce the risk of cashflows. The reduced

risk motivates the firms to raise leverage to take advantage of tax shields. Therefore, the

firms need to compare the trade-off between increasing tax shields due to the reduced risk of

cashflows and the need to protect investment options. The optimal leverage is determined

by the combined effect of these two channels. As a result, the optimal leverage ratio is

derived to have a U-shaped relation with capital intensity.

Moreover, the level of the model-implied optimal leverage ratio is between 40 and 50

percents, which is comparable to its empirical counterpart. In fact, the literature including

Leland (1994) and Graham (2000) has conceived it a puzzle for firms to opt for such low

leverages given the high potential of increasing tax benefits. This puzzle is resolved by

using the same mechanism as in Almeida and Philippon (2007) that firms are more likely to

default and incur high financial distress costs during a recession. The covariation of distress

costs with the macroeconomic condition leads firms to opt for conservative debt policy.

The second contribution is to show why profitability and leverage are important deter-
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minants of investments. According to rational equilibrium models, firms make investments

when the cost of capital is cheaper than the return from investments, or the marginal Q

ratio. As implied by Modigliani and Miller (1958), investment decisions need to be sepa-

rated from financing decisions, thus the marginal Q is expected to be the sole determinant

of investments. However, numerous studies such as Fazzari, Hubbard, Petersen, Blinder,

and Poterba (1988) show that profitability and leverage are as important determinants of

investments as the Q ratio. Those studies attribute the finding to financial constraints

meanwhile Erickson and Whited (2000) attribute it to the measurement error of the Q ra-

tio. In this paper, I show that the Tobin’s Q ratio is not a perfect proxy of investments due

to the heterogeneity in firms’ production technologies, and that profitability and leverage

are effective to adjust the inter-firm variations of the Q ratio. Consistent with the empirical

evidence, the regressions on simulated samples show that high profitability and low leverage

ratio predict more investments even when the Q ratio is controlled.

Lastly, the third contribution is to match the moments of asset returns such as riskfree

interest rates, stock market excess returns, value premium, and credit spreads. The equity

premium puzzle is resolved by the long-run risk framework that combines the time-varying

macroeconomic risk with the Epstein and Zin (1989) preference. The representative agent

cares about the intertemporal distribution of risk, and thus pays high risk premium even

for a small but persistent long-run risk in consumption.

The value premium is explained by combining two channels in the literature. One is the

costly reversibility of investments (e.g., Berk, Green, and Naik (1999), Gomes, Kogan, and

Zhang (2003), Carlson, Fisher, and Giammarino (2004), and Zhang (2005)), and the other

is the high leverage of value firms (e.g., Ozdagli (2012), and Choi (2013)).

My model also generates the average credit spreads of 139.6 bps, which is comparable

to 126.6 bps of the spreads of the BofA Merrill Lynch US Corporate BBB and AAA option-

adjusted bond yields. As Huang and Huang (2012) point out, standard models of credit risk

such as Merton (1974) and Leland (1994) are not able to generate realistic credit spreads.

The difficulty of matching the level of credit spreads has also been considered a puzzle

until Hackbarth, Miao, and Morellec (2006), Chen, Collin-Dufresne, and Goldstein (2009),

Bhamra, Kuehn, and Strebulaev (2010), and Chen (2010) show that the credit risk premium

can be understood as a compensation for the covariation of default risk with macroeconomic

conditions.

The paper by Kuehn and Schmid (2014) is especially close to my work as they also

develop a joint dynamic equilibrium model of leverage and investments. Both of our models
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are also based on Bansal and Yaron (2004)’s long-run risk framework. In contrast to my

study, however, they do not account for the heterogeneity in firms’ production technologies.

In my paper, firms span a two-dimensional space of productivity and production technology

(or, capital intensity). In comparison, they assume that all firms share identical production

technology but differ in the level of vested capital. This setup adds complexity to their

model. Thus, closed-form solutions do not exist and numerical solutions are derived instead.

Our focuses also differ. My work is to study how the heterogeneity in firms’ production

technologies affects leverage, investment and asset returns meanwhile their work is to study

homogenous firms with differing levels of capital on the credit spreads.

2 Theory

In this section, I borrow the structural equilibrium model of dynamic capital structure

from Bhamra, Kuehn, and Strebulaev (2010, hereafter BKS) and then extend the model to

incorporate an investment opportunity. It is a consumption-based asset pricing model with

a representative agent of the Epstein–Zin–Weil preference. The state price density in the

economy, πt, is derived from the marginal utility of the agent’s consumption,

πt =
(
β e−βt

) 1−γ
1− 1

ψ C−γt

(
pC,t e

∫ t
0 p
−1
C,sds

)− γ− 1
ψ

1− 1
ψ , (1)

where β is the rate of time preference, γ is the coefficient of relative risk aversion (RRA), ψ is

the elasticity of intertemporal substitution (EIS), and pC is the ratio of price to consumption.

I assume ψ > 1/γ, which implies that the agent prefers early resolution of uncertainty.

The state of the economy is denoted by νt, and the economy can be either in a bad state

(νt = 1) or a good state (νt = 2). The shift between these two states is governed by the

Markov chain, and λνt denotes the probability per unit time of the economy leaving state

νt. The convergence rate of the Markov chain shift is given by p = λ1 + λ2, and thus the

long-run distribution is derived as

(f1, f2) = (λ2/p, λ1/p) , (2)

where fi is the long-run probability of being in state i.
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The aggregate consumption process, Ct, is given by

dCt
Ct

= gνt dt+ σC,νtdBC,t, (3)

where gνt is expected consumption growth rate in state νt, σC,νt is consumption growth

volatility, and BC,t is a standard Brownian motion. The first and second moments of the

consumption growth process depend on the state of the economy, νt, and the uncertainty of

being in either state is priced since the representative agent cares about the intertemporal

distribution of risk. Thus, this model can be considered a revised form of Bansal and Yaron

(2004)’s long-run risk framework.

Firm n makes earnings by combining productivity with capital,

Πn,t = Xα
n,tK

1−α
ν0 −mKν0 , (4)

where Πn,t is the firm’s earnings, Xn,t is productivity, Kν0 is the capital stock vested at

time 0, α is the share of productivity in production, and m denotes the operating cost of

capital. The optimized level of capital Kν0 depends on the state at time 0, ν0. m can be

considered depreciation cost that the firm pays for the maintenance of the capital. Firms

with low α can be considered to have capital-intensive production technology.

The firm’s productivity process, Xn,t, is given by

dXn,t

Xn,t
= θn,νt dt+ σidX,n dB

id
X,n,t + σsX,n,νt dB

s
X,t, (5)

where θn,νt is the expected productivity growth rate of firm n, and σidX,n and σsX,n,νt are the

idiosyncratic and systematic volatilities of the firm’s productivity growth. The standard

Brownian motion Bs
X,t is the systematic shock and thus correlated with the consumption

growth shock,

dBs
X,t dBC,t = ρXC dt. (6)

However, the idiosyncratic shock, Bid
X,n,t, is not correlated with any other uncertainty. I

will suppress the subscript n hereafter for the simplicity of notation. Since both consump-

tion and productivity processes have procyclical mean growth rates and countercyclical

volatilities, it can be assumed that g1 < g2, θ1 < θ2, σC,1 > σC,2, and σsX,1 > σsX,2.

This specification generalises BKS since the two models become equivalent for α = 1

and m = 0. Throughout this paper, I assume zero operating cost of capital, m = 0, to
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assure that the effect of an investment opportunity on leverage is not due to the operating

leverage induced by this variable.

2.1 Default and restructuring boundaries

The firm does not continuously adjust capital structure since it is costly to issue new debts.

Instead, the firm sets an inaction region with two boundaries: default boundaries at the

lower bound and restructuring boundaries at the upper bound. At the default boundaries,

the firm declares bankruptcy and debt holders receive a recovered portion of its liquidated

unlevered assets. At the restructuring boundaries, the firm issues new debts. Between

these two boundaries, the firm distributes earnings to pay for coupons to debt holders and

dividends to shareholders.

Many papers in the literature1 consider a firm’s earnings or its present value as an exoge-

nous state variable, and thus implicitly assume that all proceeds from new debt issuance are

paid to shareholders as lump-sum cash dividends. However, the empirical evidence shows

that it is not the case. For example, Figure 1 shows where firms spend the proceeds from

debt issuance. The figure covers only the firms whose net debt issuance is bigger than 3%

of their lagged market assets so that we can focus on the firms in their restructuring years.

The figure shows strong positive correlations between net debt issuance and the investments

in both tangible and intangible assets. In comparison, the correlation with the change in

cash holdings is positive but its magnitude is substantially smaller relative to those with the

investments. Moreover, net equity payout actually turns out to have negative correlation

with net debt issuance, implying that firms issue equity and debt simultaneously.

Table 1 shows the results of regressing those variables—investments in tangible and

intangible assets, increase in cash holdings, and net equity payout—on net debt issuance.

The table again confirms the implications from the figure. For every dollar from net debt

issuance, 45.9 cents and 39.8 cents are likely to be invested in tangible and intangible assets,

respectively. Cash holdings are likely to increase by 7.7 cents, still significant but much

smaller than the coefficients on investments. The net equity payout has negative coefficient,

which implies that one dollar from debt issue is on average matched with another 9 cents

of equity issue. Instead of making cash payments to shareholders at refinancing, firms issue

debt and equity simultaneously to make new investments in tangible and intangible assets.

1See Leland (1994), Chen, Collin-Dufresne, and Goldstein (2009), Chen (2010), and Bhamra, Kuehn, and
Strebulaev (2010) among many others.
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Figure 1: Debt issuance with corporate policy variables

This scatter plot compares net debt issuance with four corporate policy variables. Net debt
issuance is defined as the changes in the sum of total long-term debt (Compustat code:
dltt) and total debt in current liabilities (dlc). The policy variable in subfigure (a) is the
change in total property, plant and equipment (ppent), and the variable in (b) is the change
in total intangible assets (intan). The variable in (c) is the change in cash equivalents
(che), and the one in (d) is net equity payout, which is the sum of total dividends (dvt) and
purchase of shares (prstkc) less sales of shares (sstk). All variables are scaled by lagged
market assets. This figure includes only the samples of their refinancing years in which the
net debt issuance is bigger than 3% of the lagged market assets.

(a) Change in tangible assets (b) Change in intangible assets

(c) Change in cash holdings (d) Net equity payout
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Table 1: Regression of corporate policy variables on debt issuance

Corporate policy variables are regressed on the net debt issuance. Net debt issuance is defined as the
changes in the sum of total long-term debt (Compustat code: dltt) and total debt in current liabilities
(dlc). The policy variable in column (1) is the change in total property, plant and equipment (ppent),
and the variable in (2) is the change in total intangible assets (intan). The variable in (3) is the
change in cash equivalents (che), and the one in (4) is net equity payout, which is the sum of total
dividends (dvt) and purchase of shares (prstkc) less sales of shares (sstk). All variables are scaled by
lagged market assets. This table runs regressions using only the samples of their refinancing years in
which the net debt issuance is bigger than 3% of the lagged market assets. Numbers in parentheses
are OLS t statistics. ***, **, and * denote significance at the 1%, 5%, and 10% level, respectively.

(1) (2) (3) (4)

dep. var. ∆Tangible Assets ∆Intangible Assets ∆Cash Holdings Net Equity Payout

Net debt Issuance 0.459*** 0.398*** 0.077*** -0.090***
(112.67) (87.02) (26.59) (-32.09)

obs 28,707 24,805 28,756 28,761
R2 0.307 0.234 0.024 0.035

Thus, I assume that firms adjust not only capital structure but also their investment

level at the restructuring boundaries. The investment cost can be either larger or smaller

than the amount of new debt issuance. When the investment costs more than the debt

issue, the firm is implied to issue equity to fund the investment. Otherwise, the leftover of

newly issued debts after investment will be paid to shareholders.

This assumption is consistent with Bachmann and Bayer (2014)’s finding that the cross-

sectional dispersion of firm-level investment rates is procyclical even though the dispersion

of firm-level productivity shocks is countercyclical. The authors explain the observation

using the fixed cost of investment. The so-called “spike-adjusters” make investments when

they reach the boundary at which the return from investment becomes higher than fixed

cost, and this boundary is more likely to be reached during a good time. I combine this

investment boundary with the refinancing boundary for the tractability of the model, and

this setup is supported by the empirical data.

Since the economy is in either one of two states, the default and restructuring boundaries

have four different values, respectively, depending on the state at time 0 and the state at
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the time of default/restructuring, ν0 and νD/νU ,

XD,ν0 νD ⇒ {XD,11, XD,12, XD,21, XD,22} , (7)

and

XU,ν0 νU ⇒ {XU,11, XU,12, XU,21, XU,22} . (8)

Firms are more likely to default during a bad time, and this counter-cyclicality of default

implies XD,ν0 1 > XD,ν0 2 for ν0 = 1, 2. Similarly, firms are more likely to make investments

during a good time, and this pro-cyclicality of investments implies XU,ν0 1 > XU,ν0 2

2.2 Debt and equity valuation

When the firm goes bankrupt and then liquidated, its asset is priced as the after-tax value

of the unlevered firm’s future earnings. Let Aνt denote the liquidation value in state νt.

Aνt(Xt,Kν0) = (1− τ)Et

[ ∫ ∞
t

πs
πt

Πs ds

∣∣∣∣ νt ] (9)

= (1− τ)

(
Xα
t K

1−α
ν0

rA,νt
− mKν0

rP,νt

)
, (10)

where τ is tax rate, rA,νt is the discount rate in the standard Gordon growth model, and

rP,νt is the discount rate of perpetuity.

rA,νt = µ̄νt − α θνt +
(µ̄j − α θj)− (µ̄νt − α θνt)

p̂+ µ̄j − α θj
p̂ f̂j , j 6= νt, (11)

µ̄νt = rνt + γ α ρXC σ
s
X,νt σC,νt , (12)

and

rP,νt = rνt +
rj − rνt
p̂+ rj

p̂ f̂j , j 6= νt, (13)

where rνt is the one-period riskfree interest rate in state νt, p̂ is the risk-neutral convergence

rate of the Markov chain, and f̂j is the risk-neutral long-run probability of being in state

j. The derivation of the riskfree interest rate and the risk-neutral probabilities is explained

in Appendix A.

Debtholders are entitled to three different types of cashflows. The first is the coupon

payment until either boundary is reached. The second is the liquidation value of the firm’s

assets when it goes bankrupt. The third is the continuation value of the debt when the
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restructuring boundary is reached. Thus, the value of debt can be derived as

Bνt (Xt,Kν0 , cν0 , ν0) =
cν0
rP,νt

+
2∑

νD=1

qD,νtνD(Xt, ν0)

(
φνD AνD(XD,ν0νD ,Kν0)− cν0

rP,νD

)

+
2∑

νU=1

qU,νtνU (Xt, ν0)

(
Rν0νU −

cν0
rP,νU

)
, (14)

where qD,νtνD and qU,νtνU denote Arrow-Debreu securities that pay one at the default and

restructuring boundaries. φνD is the recovery ratio after bankruptcy, and Rν0νU is the

continuation value of the debt,

Rν0νU =
cν0

cνU (cν0)
BνU (XU,ν0 νU ,KνU (Kν0), cνU (cν0), νU ) , (15)

where cνU (cν0) and KνU (Kν0) denote the new coupon payment and capital stock in the next

restructuring cycle. All debts are assumed to have equal seniority, thus the debt is diluted

during the restructuring on a per-coupon basis.

Similarly, shareholders receive dividend payments within a cycle and the restructured

equity at the upper boundary. Thus, the value of equity can be derived as

Sνt(Xt,Kν0 , cν0 , ν0) = Divνt(Xt,Kν0 , cν0 , ν0) +
2∑

νU=1

qU,νtνU (Xt, ν0)Eν0νU (16)

where Divνt is the present value of dividends paid to equity holders during the current

cycle,

Divνt(Xt,Kν0 , cν0 , ν0) = Aνt(Xt,Kν0)− (1− τ)
cν0
rP,νt

+
2∑

νD=1

qD,νtνD(Xt, ν0)

[
(1− τ)

cν0
rP,νD

−AνD(XD,ν0νD ,Kν0)

]

+

2∑
νU=1

qU,νtνU (Xt, ν0)

[
(1− τ)

cν0
rP,νU

−AνU (XU,ν0νU ,Kν0)

]
. (17)

Eν0νU is the value of equity right before the restructuring occurs, which is the sum of net
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debt issuance and stock price less investment costs,

Eν0νU = [ (1− ινU )BνU (XU,ν0 νU ,KνU (Kν0), cνU (cν0), νU )−Rν0νU ]

− ψ (KνU (Kν0)−Kν0) + SνU (XU,ν0 νU ,KνU (Kν0), cνU (cν0), νU ) , (18)

where ινU is the debt issuance cost, and ψ(I) denotes the investment adjustment costs,

ψ(I) = I +
κ

2

(
I

Kν0

)2

Kν0 . (19)

I assume κ = 0 to show that the implications of this model are not due to the convexity of

investment adjustment costs.

2.3 Homogeneity

Homogeneity is a very effective tool to keep the tractability of the model. Let ξν0νU denote

a scaling factor that depends on the initial state (ν0) and the restructuring state (νU ), then

one could easily see

ξν0νU =
XU,ν0νU

X0
, (20)

since the firm restarts the next cycle at XU,ν0νU and all values are to be scaled by the same

constant.

BKS show that two conditions are required for the homogeneity property to hold. First,

ξν0 νU is time-invariant and level-invariant quantity. Second, the following condition needs

to be satisfied:
ξ2i

ξ1i
=
c2

c1
=
K2

K1
, i = 1, 2. (21)

The scalability due to the homogeneity condition implies that the optimal coupon and

capital for the next cycle are equal to the scaled values of those in the current cycle,

cνU (cν0)

cν0
=
KνU (Kν0)

Kν0

= ξνUνU . (22)

Combining with equation (21), it is straightforward to derive

cνU (cν0)

cνU
=
KνU (Kν0)

KνU

= ξν0νU . (23)
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The value of debt and equity at the restructuring boundaries can be simplified by ap-

plying the homogeneity conditions, (22) and (23), as follows:

BνU (XU,ν0 νU ,KνU (Kν0), cνU (cν0), νU ) = ξν0νU BνU (X0,KνU , cνU , νU ) , (24)

SνU (XU,ν0 νU ,KνU (Kν0), cνU (cν0), νU ) = ξν0νU SνU (X0,KνU , cνU , νU ) , (25)

Rν0νU =
cν0
cνU

BνU (X0,KνU , cνU , νU ) , (26)

Eν0νU =

[
(1− ινU ) ξν0νU −

cν0
cνU

]
BνU (X0,KνU , cνU , νU )

−Kν0 (ξνUνU − 1)
[
1 +

κ

2
(ξνUνU − 1)

]
+ ξν0νU SνU (X0,KνU , cνU , νU ) .

(27)

2.4 Optimization of coupons and investments

The model has 12 policy variables in total : XD,ij , XU,ij , Ki and ci for i, j = 1, 2. Among

these twelve variables, five of them are determined by the homogeneity condition.

XU,2i

XU,1i
=
XD,2i

XD,1i
=
K2

K1
=
c2

c1
for i = 1, 2. (28)

Default boundaries are chosen by the following smooth pasting conditions:

∂S1(Xt,K1, c1, 1)

∂Xt

∣∣∣∣
Xt=XD,11

= 0,
∂S2(Xt,K1, c1, 1)

∂Xt

∣∣∣∣
Xt=XD,12

= 0. (29)

The smooth pasting conditions implicitly assume convexity of S at XD and thus infer

two important implications. One is the limited liability of equity as S (Xt ;XD) > 0 for

Xt > XD, and the other is to guarantee that shareholders do not have any incentive to

delay default further from XD since S (Xt ;XD −∆)|Xt∈[XD−∆,XD] < 0 for a small ∆. In

addition, the value of equity is always zero at XD, S (XD ;XD) = 0, due to the definition of

the Arrow–Debrew securities and equation (16) and (17). Note that XD cannot be chosen

by firm value maximization because firm value is maximized when XD = 0, the firm never

defaults, and thus the tax shield becomes a perpetuity. Of course, the limited liability of

equity prevents XD from being arbitrarily small.

Now only five policy variables are left undetermined: XU,11, XU,12, K1, c1 and c2. For

a given coupon c2, other policy variables are chosen to maximise the levered firm value in

state 1,

(XU,11, XU,12,K1, c1) = arg max F1(XU,11, XU,12,K1, c1) (30)
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where F1 = B1(X0,K1, c1, 1)(1−ι1)−K1+S1(X0,K1, c1, 1). Finally, coupon c2 is determined

by maximising the levered firm value in state 2,

c2 = arg max F2(c2) (31)

where F2 = B2(X0,K2, c2, 2)(1− ι2)−K2 + S2(X0,K2, c2, 2).

3 Model’s implication about the investment policy

Table 2 reports the estimates of model parameters. Panel A shows the parameters for the

preference function of the representative agent. RRA and EIS are taken from Bansal and

Yaron (2004)’s calibration. ψ > 1/γ implies that the agent prefers the early resolution of

Table 2: Parameter estimates

This table reports the estimates of model parameters. The parameters for the representative agent’s
preference in panel A are taken from the calibration of Bansal and Yaron (2004), and the parameters
for the economy and the firm in panel B and C are from Bhamra, Kuehn, and Strebulaev (2010).

Parameter Symbol State 1 State 2

Panel A. Representative agent’s preference

Relative risk aversion (RRA) γ 10
Elasticity of intertemporal substitution (EIS) ψ 1.5
Annual discount rate β 0.01

Panel B. Economy

Consumption growth rate gνt 0.0141 0.0420
Consumption growth volatility σC,νt 0.0114 0.0094
Actual long-run probabilities fνt 0.3555 0.6445
Actual convergence rate to long run p 0.7646 0.7646
Tax rate τ 0.35 0.35

Panel C. Firm

Productivity growth rate θνt −0.0401 0.0782
Productivity growth systematic volatility σsX,νt 0.1334 0.0834

Productivity growth idiosyncratic volatility σidX,νt 0.2258 0.2258

Correlation ρXC 0.1998 0.1998
Bankruptcy costs 1− φνt 0.30 0.10
Debt issuance costs ινt 0.03 0.01
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uncertainty, and ψ > 1 is to ensure that the price-to-consumption ratio is procyclical.

Panel B shows the parameters for the aggregate economy. I borrowed the parameters

from Bhamra, Kuehn, and Strebulaev (2010), who calibrate them using the consumption

expenditure data from the Bureau of Economic Analysis. According to their calibration,

consumption growth rate is procyclical but its volatility is countercyclical. The average

duration of the bad state (νt = 1) is 2.029 years, and the duration of the good state (νt = 2)

is 3.679 years. In the literature, tax rate varies from 15 percent in BKS to 35 percent in

Leland (1994), and I use 35 percent in this paper.2

Panel C shows the parameters for a firm. Productivity growth rates are pro-cyclical

meanwhile its volatilities, bankruptcy costs and debt issuance costs are couter-cyclical.

Productivity growth rates and its volatilities are yet to be calibrated to data. They are

temporarily matched to BKS’ estimates of earnings growth rate parameters.

Table 3: Earnings growth rate moments

This table shows the moments of earnings growth rates. The first row shows their empirical moments
which are estimated by Bhamra, Kuehn, and Strebulaev (2010), and the rows below show the model-
implied moments from the simulation of 1,000 firms for 10,000 years for each value of α, the share
of productivity in production. The simulation is run on a monthly basis and then the moments are
annualised. The column “overall” shows the weighted average of moments in bad and good states
by the long-run probabilities of each state, fνt .

mean standard deviation kurtosis

bad good overall bad good overall bad good overall
state state state state state state

empirical -0.0401 0.0782 0.0361 0.2623 0.2407 0.2484

α = .99 -0.0379 0.0782 0.0369 0.2595 0.2385 0.2460 3.00 3.00 3.00
α = .90 -0.0328 0.0770 0.0379 0.2368 0.2202 0.2261 3.04 3.17 3.12
α = .80 -0.0271 0.0754 0.0389 0.2123 0.2022 0.2058 3.28 4.30 3.94
α = .70 -0.0214 0.0734 0.0397 0.1887 0.1873 0.1878 4.23 8.41 6.93
α = .60 -0.0158 0.0714 0.0404 0.1664 0.1762 0.1727 7.5 19.0 14.9
α = .50 -0.0098 0.0691 0.0411 0.1462 0.1696 0.1613 18.1 40.4 32.5
α = .40 -0.0041 0.0662 0.0412 0.1289 0.1680 0.1541 49.9 74.1 65.5
α = .30 0.0013 0.0626 0.0408 0.1167 0.1718 0.1522 136 118 124
α = .20 0.0067 0.0574 0.0394 0.1137 0.1817 0.1575 330 173 229

Table 3 shows the moments of earnings growth rates from the model’s simulations and

2The model-implied optimal leverage level falls from 40–50% when tax rate is 35 percent to 25–35% when
tax rate is 15 percent due to the decreasing benefits of tax shields.
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compare them to the empirical moments which are estimated by BKS. For each value of α,

the share of productivity in production, 1,000 firms are simulated for 10,000 years and then

the moments are estimated conditional on the state of the economy. The column “overall”

shows the average of the moments in each state weighted by its long-run probability, fνt .

According to the table, the case of α = .99 closely matches BKS’ estimates since the

model converges to BKS as α→ 1. Its kurtosis implies that its earnings growth shocks are

driven by normal distribution.

As the firm becomes more capital-intensive and thus α decreases, however, not only the

average growth rates and its volatilities get closer to zero but also its kurtosis increases

significantly. The change in the distribution of earnings growth is due to the fact that

capital-intensive firms are more likely to grow through investments rather than a gradual

rise in productivity. The decreasing standard deviation implies that capital-intensive firms

have less volatile cashflows and thus are incentivised to borrow more and opt for higher

leverage. This implication will be reassured by the next figure.

Figure 2 plots model-implied firm characteristics at the initial refinancing, t = 0, with

regard to α. Each subfigure corresponds to log capital, log firm size, Tobin’s Q, leverage,

and the probability of default and refinancing within the next 10 years after refinancing,

respectively. Productivity at t = 0 is normalised to one, X0 = 1. These characteristics are

the outcomes of the optimal policy variables that are derived in Section 2.4. The figure

plots the weighted average of firm characteristics at each initial state, ν0 = 1, 2.

Panel (a) shows the log optimal investment in capital, logKν0 . The optimal investment

decreases with α since high-α firms earn less marginal returns from the investment in capital.

For example, the amount of capital at ν0 = 1 rapidly decreases from 1,108 for α = 0.4 to

172 for α = 0.5 and 46 for α = 0.6.

Panel (b) shows the log of total firm value, log(Bν0(X0) + Sν0(X0)). The log firm

size also decreases with α since the productivity at t = 0 is normalised and thus earnings

monotonically increase with capital, Π0 = K1−α
ν0 . Capital-intensive firms with low α make

bigger investments, generate higher earnings, and thus lead to larger market values.

Panel (c) exhibits Tobin’s Q,
Bν0 (X0)+Sν0 (X0)

Kν0
, which is the ratio of the previous two

characteristics. As shown earlier, the optimal investment in the denominator decreases

with α much faster than the firm size in the numerator, thus the Q ratio monotonically

increases with α. In particular, Q explodes to infinity as α → 1. Although all firms are at

t = 0 and thus have little difference in terms of the share of growth options in total firm
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Figure 2: Firm characteristics at the initial refinancing

The figure shows model-implied firm characteristics at the initial refinancing, t = 0, for each
value of α. In panel (a) to (d), the characteristics are derived for each state of ν0 = 1, 2
and their weighted averages are plotted. Panel (e) and (f) show the probabilities of default
and refinancing within the next 10 years after refinancing. The probabilities are estimated
from the simulation of 10,000 firms for 120 months twice, one to start in a bad state and
the other to start in a good state, and the whole simulation is repeated for 1,000 times.

(a) Log capital ( logKν0) (b) Log firm size ( log{Bν0(X0) + Sν0(X0)})

(c) Q ratio
(
Bν0 (X0)+Sν0 (X0)

Kν0

)
(d) Leverage

(
Bν0 (X0)

Bν0 (X0)+Sν0 (X0)

)

(e) Probability of default (f) Probability of refinancing
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value, the Q ratio shows huge variation depending on their reliance on capital. In other

words, value firms with low α may have higher Q ratio than growth firms with high α.

Panel (d) shows the optimal leverage,
Bν0 (X0)

Bν0 (X0)+Sν0 (X0) . As it was previously implied

by Table 3, low-α firms have less volatile earnings and are thus incentivised to take on

higher leverage. However, the figure shows that leverage does not monotonically decrease

with α. As implied by the liquidation value in equation (9), Aνt(Xt,Kν0), firms lose further

investment opportunities at default. Since low-α firms grow through investment, they adopt

conservative debt policy to prevent the prospective loss of investment opportunity. In

contrast, high-α firms are less concerned with the loss and thus take on more aggressive

debt policy. This is consistent with George and Hwang (2010)’s observation that firms

with low distress costs are likely to have higher leverage ratio at refinancing. Therefore, the

optimal leverage shows U-shape due to the combined effect of these two channels. Moreover,

the magnitude of the model-implied leverage is well matched with the level observed from

empirical data.

Panel (e) and (f) show the probabilities of default and refinancing within the next 10

years after the initial refinancing. The probabilities are estimated from simulations. I

simulate 10,000 firms for 120 months twice, one to start in a bad state and the other to

start in a good state, count the number of defaults and refinancing, and repeat the whole

process for 1,000 times.

In panel (e), the probability of default monotonically increases with α. Although low-α

firms take on high leverage, their leverage ratio is not high enough to raise the default

probability since the firms are afraid of losing future investment opportunities. In contrast,

high-α firms gain more from tax shields than investments, and thus issue more debts at the

risk of raising the chance of default.

Panel (f) shows that the probability of refinancing also generally increases with α, im-

plying that high-α firms refinance more frequently than low-α firms. In a static model

such as Leland (1994), firms compare the tradeoff between tax shields and financial distress

costs. In a dynamic model such as BKS, however, firms can defer a portion of tax shields

until the next refinancing cycle in order to reduce the distress costs. Since high-α firms

have higher chance of default, they are incentivised to temporarily defer some tax shields

instead of refinancing more frequently.

To summarise, the figure provides the following implications. First, Q → ∞ as α → 1

not because high-α firms have higher growth options but because they have low returns

from investments and thus the denominator of their Q ratio converges to zero. Second,
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high-α firms gain more from tax shields than investment opportunities. With these two

implications combined, one may conclude that firms with higher Q ratio are actually less

concerned with future investment opportunities. This conclusion seemingly challenges the

traditional approach to use the Q ratio as a proxy for growth options.

So far, the figure has covered the cross-sectional firm characteristics at the initial re-

financing point (t = 0) and shows that the Q ratio is affected by a firm’s production

technology, α. Now the next figure will cover the characteristics within a cycle depending

on the state variable of productivity, Xt. It assures that the Q ratio indeed increases with

growth options within a cycle but still posits the problem that inter-firm variations of

Q may be as large as, or even larger than, its intra-firm variations.

Figure 3: Firm characteristics within a cycle

This figure shows model-implied firm characteristics within a refinancing cycle for α = 0.5,
0.4 and 0.3, respectively. The horizontal axis in all four subfigures denotes the productivity
state variable, Xt. The characteristics are derived for the economy to be in a good state,
ν0 = νt = 2.

(a) Share of growth option in total firm value (b) Q ratio

(c) Leverage (d) Profitability
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Figure 3 shows model-implied firm characteristics within a refinancing cycle for α = 0.5,

0.4 and 0.3, respectively. The horizontal axis in all four subfigures denotes the productivity

state variable, Xt. The figure is plotted for the inaction region of Xt between the maximum

of default boundaries, XD,ν0νt , and the minimum of refinancing boundaries, XU,ν0νt . The

characteristics are derived for the economy to be in a good state, ν0 = νt = 2. Although

not reported in this article, the relations of firm characteristics to Xt are equivalent to the

other states of the economy except a little difference in magnitudes.

To begin with, panel (a) shows the share of growth options in the total firm value,

1 − Aνt (Xt, ν0)
Bνt (Xt, ν0)+Sνt (Xt, ν0) . It is obvious that the share of growth options monotonically

increases with Xt as firms get closer to the exercise of the next refinancing and investment

options. Also, the share turns negative when Xt falls near to the default boundary due

to financial distress costs (1 − φνt). What is interesting, however, is the limited effects of

α. There is virtually no difference between the firms of different α’s. Thus, the share of

growth options appears to be determined by Xt relative to its boundaries regardless of the

cross-sectional difference of firms’ production technologies.

Next, panel (b) revisits the Q ratio,
Bνt (Xt, ν0)+Sνt (Xt, ν0)

Kν0
. The Q ratio monotonically

increases with Xt as firms with high Xt bear bigger growth options. In contrast to the

previous panel, however, the Q ratio is also significantly affected by α, the cross-sectional

difference of firms. Therefore, one can conclude that the Q ratio is not perfect as a proxy

of growth options since it is affected by inter-firm variations although the share of growth

options is not. Growth firms with low α possibly have lower Q ratio than value firms with

high α.

The figure shows two more characteristics: leverage in panel (c),
Bνt (Xt, ν0)

Bνt (Xt, ν0)+Sνt (Xt, ν0) ,

and profitability in panel (d), which is defined as earnings less coupons divided by the vested

capital,
Xα
t K

1−α
ν0
−cν0

Kν0
. These two characteristics also have monotonic relations to Xt but in

different directions from the Q ratio. The leverage ratio decreases with Xt but with limited

effects by α, and the profitability increases with Xt but is negatively related to α. Thus,

low leverage and high profitability predict more investments in the next time period.

Note that the model assumes two independent dimensions of firm heterogeneity. One

is the productivity state variable, Xt, and the other is a firm’s production technology, α.

Xt indicates the timing of next investments meanwhile α determines the magnitude of

investments to be made. Therefore, although the Q ratio alone is not a perfect proxy for

growth options, the two-dimensional space of Xt and α can be spanned by the combination

of Q ratio with either leverage or profitability. In other words, the leverage and profitability
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can be used to adjust for the inter-firm variations of the Q ratio and thus play an important

role as the determinants of investments.

Panel (c) and (d) also reassure Danis, Rettl, and Whited (2014) and Korteweg and

Strebulaev (2013)’s finding that the cross-sectional correlation between profitability and

leverage is positive when firms are at their optimal leverage but negative otherwise. Ac-

cording to the figure, high-α firms have lower leverage and lower profitability at the initial

refinancing point when X0 = 1, thus implying a positive relation between these two vari-

ables. Within a cycle, however, leverage and profitability are negatively correlated since

leverage decreases with Xt while profitability increases. Moreover, their unconditional cor-

relation is expected to be negative since most variations in leverage and profitability are

driven by Xt rather than α. This implication can resolve Myers (1993), who states that

“the most telling evidence against the static trade-off theory is the strong inverse correlation

between profitability and leverage.”

Table 4: Regression of net investments on Q, profitability and leverage

Net investments are regressed on lagged Q ratio, profitability and leverage. Panel A runs the
regression on simulated samples, and Panel B on the Compustat database. In Panel A, 200 firms for
each group of α = .3, .4 and .5 are simulated for 100 years, of which the first 50 years are discarded
as burn-in periods and the latter 50 years are used to run the regression. This whole process is
repeated 8,845 times to derive the .05 and .95 confidence intervals, which are shown in brackets. In
Panel B, the net investments are defined as the change in the sum of tangible and intangible assets
(ppent+ intan) scaled by the sum’s lagged value. Numbers in parentheses are OLS t statistics. ***,
**, and * denote significance at the 1%, 5%, and 10% level, respectively.

(1) (2) (3) (4) (5) (6)

Panel A. Simulation Panel B. Empirical

Q 0.035*** 0.035*** 0.023*** 0.023*** 0.021*** 0.018***
[0.029, 0.041] [0.028, 0.043] [0.021, 0.026] (55.05) (48.67) (37.74)

profitability 2.629*** 0.118***
[1.800, 3.688] (21.27)

leverage -0.215*** -0.188***
[-0.390, -0.097] (-22.96)

R2 0.110 0.153 0.117 0.048 0.055 0.056
[0.100, 0.119] [0.131, 0.172] [0.103, 0.129]

obs 60,598 60,598 60,598

Table 4 reports the results of regressing net investments on the lagged Q ratio, profitabil-
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ity and leverage ratio. The regression is run on the simulated samples in Panel A and on

the Compustat database in Panel B. In Panel A, 200 firms for each group of α = .3, .4 and

.5 are simulated for 100 years, of which the first 50 years are discarded as burn-in periods

and the latter 50 years are used to run the regression. This whole process is repeated 8,845

times to derive the .05 and .95 confidence intervals, which are shown in brackets. In Panel

B, capital stock is first defined as the sum of tangible and intangible assets (ppent+ intan

in the Compustat item codes). Net investments are the change in the capital stock scaled

by its lagged value, Q ratio is the market value of assets divided by the capital stock,

profitability is net incomes scaled by the capital stock, and leverage is the book value of

debts divided by the market value of assets. Firms whose total book assets are less than

10 million dollars are dropped, and the outliers of the characteristics are filtered at 1% and

99% levels.

As expected, the characteristics predict investments with correct signs. Q and prof-

itability predict high investments while leverage does low ones. However, I could not put

the three characteristics altogether since it creates multicollinearity among variables. The

table reassures that profitability and leverage can raise the predictability of investments

even in the presence of the Q ratio.

Moreover, the magnitudes of regression coefficients from the simulations in Panel A are

comparable to those from the Compustat database in Panel B except the coefficient of prof-

itability. The coefficient of leverage is within the .05 and .95 confidence interval, and the

coefficients of Q ratio are also close to the confidence interval boundaries. Only the prof-

itability shows a large difference due to the unconditional second moments of its values. For

example, the unconditional standard deviation of profitability from the simulations is 0.015

while its standard deviation from the Compustat is 0.343. The simulated standard devia-

tion is 22.9 (= 0.343/0.015) times smaller, thus its coefficient becomes 22.3 (= 2.629/0.118)

times bigger. This comparison reminds of Table 3 which shows that the model underesti-

mates the second moments of earnings growth rates compared to the empirical estimates

by BKS.

In sum, this section shows that the variations of the Q ratio are driven by not only the

likelihood of the exercise of growth options but also the cross-sectional difference of a firm’s

production technology. Thus, capital-intensive firms can have lower Q ratio even when

they have larger growth options. The inter-firm variations of the Q ratio can be adjusted

by adding leverage and profitability as the explanatory variables of investment decisions.

Thus, the model can explain why leverage and profitability are important determinants of
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investments without the help of the pecking order theory.

4 Risk premium and asset returns

One long-time yardstick to test a structural model of investments is to see whether the model

is able to recreate the value premium. For example, Carlson, Fisher, and Giammarino (2004)

and Zhang (2005) explain the value premium using the costly reversibility of investments

and its covariation with the stochastic discount factor. In comparison, Ozdagli (2012) and

Choi (2013) find that value firms tend to take on higher leverages and thus yield higher

stock returns than growth firms but their unlevered asset returns have little variations across

book-to-market portfolios and can be explained by a single-factor CAPM model. My model

is related to both approaches since (1) it rules out the disinvestment of capital and (2) the

growth options and leverage are negatively correlated with each other due to their relation

to the state variable, Xt.

Figure 4: Equity risk premium and credit spreads

The figure shows the model-implied moments of equity risk premium and credit spreads.
The risk premiums are estimated for each state of (ν0, νt) ∈ {(1, 1), (1, 2), (2, 1), (2, 2)}, and
their weighted averages are plotted. The horizontal axis denotes the productivity state
variable, Xt.

(a) Equity risk premium (b) Credit spreads

Figure 4 shows the model-implied moments of equity risk premium and credit spreads

with regard to the productivity state variable, Xt. Panel (a) compares equity risk premium,

which is derived as

equity risk premium = γ ρXC
∂ lnSνt(Xt, ν0)

∂ lnXt
σsX,νt σC,νt + Γνt , (32)
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where the first term of its right-hand side is the risk premium due to the covariation with

the Browninan systematic shock and the second term, Γνt , is the premium to the Markov

regime switch,

Γνt = (1− ωνt)
{
Sj(Xt, ν0)

Sνt(Xt, ν0)
− 1

}
λνt , j 6= νt. (33)

The figure suggests two implications. First, the term
∂ lnSνt (Xt,ν0)

∂ lnXt
in (32) captures the

leverage effect, thus the equity risk premium monotonically decreases with Xt. Second,

high-α firms have slightly higher risk premium than low-α firms since their earnings growth

rates have higher systematic risk.

As discussed in the previous section, the Q ratio is positively related to Xt and α. If

firms have low Q ratio due to low productivity (Xt), their equity would have been more

levered and thus offer higher equity risk premium. If the low Q were accounted by low α,

instead, the firms would bear lower systematic risk and thus yield lower unlevered asset

returns. This implication is consistent with Choi (2013)’s finding that high book-to-market

portfolios have higher leverage and stock returns but their unlevered asset returns have

lower systematic risk.

Panel (b) compares the credit spreads of corporate debts, which is derived as

credit spread =
c

Bνt (Xt, cν0 , ν0)
− rP,νt . (34)

Since the corporate debts are assumed to pay coupons indefinitely, their yields are sub-

tracted by the riskfree perpetuity rates. The figure shows that the credit spreads explode

as Xt approaches its default boundary due to the increasing chance of default. Moreover,

high-α firms show higher credit spreads than low-α firms since they adopt more aggressive

debt policy as explained in the previous section.

In sum, the figure shows the risk premiums conditional on the state variables. The risk

premiums in both the stock and corporate bond markets decrease with Xt due to a leverage

effect but increase with α because of the increasing systematic risk and more aggressive

debt policy. Now the next table is to compare the unconditional moments of asset returns

from simulations to those from the empirical data.

Table 5 shows the unconditional first and second moments of riskfree interest rates,

stock market excess returns, value premium and the bond market credit spreads. In Panel

A, 200 firms for each group of α = .3, .4 and .5 are simulated for 100 years, of which the

first 20 years are discarded as burn-in periods and the latter 80 years are used to estimate
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Table 5: Asset return moments

This table shows the first and second moments of asset returns from the simulations in Panel A
and from the empirical data in Panel B. In Panel A, 200 firms for each group of α = .3, .4 and
.5 are simulated for 100 years, of which the first 20 years are discarded as burn-in periods and the
latter 80 years are used to estimate the asset return moments. This whole process is repeated 9,130
times to derive the .05 and .95 confidence intervals, which are shown in brackets. In Panel B, the
moments of riskfree interest rates, stock market excess returns and value premium are estimated
from the monthly Fama–French factors, and the moments of credit spreads are estimated from the
BofA Merrill Lynch US Corporate BBB/AAA Option-Adjusted Spreads.

Panel A. Simulation Panel B. Empirical

mean stdev mean stdev

Riskfree rates 0.248 0.076 0.284 0.254
[0.225, 0.269] [0.066, 0.079]

Stock market 0.379 4.133 0.651 5.391
excess returns [0.168, 0.529] [3.432, 4.782]

Value premium 0.177 1.448 0.394 3.489
[0.003, 0.289] [1.173, 1.743]

Credit spreads 1.396 0.156 1.266 0.699
[1.286, 1.531] [0.098, 0.228]

the asset return moments. This whole process is repeated 9,130 times to derive the .05

and .95 confidence intervals, which are shown in brackets. In Panel B, the moments of

riskfree interest rates, stock market excess returns and value premium are estimated from

the monthly Fama–French factors, and the moments of credit spreads are estimated from

the spread of the BofA Merrill Lynch US Corporate BBB and AAA option-adjusted bond

yields.3 All data are based on monthly observations. The first three variables are the

monthly realised values while the last variable—credit spreads—is annualised.

The table shows that the mean value of riskfree interest rates from the simulation is

well matched to its empirical counterpart although the simulated standard deviation is far

short of the empirical standard deviation. The difference in the second moment of riskfree

rates is because the model does not take into account the variations in inflation rates. In

other words, the model-implied riskfree rates are in real terms while the empirical riskfree

rates are nominal.

3http://research.stlouisfed.org/fred2/categories/32297
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The model-implied mean and volatility of the stock market excess returns are 0.349

and 0.4133, which are smaller than their empirical counterparts of 0.651 and 5.391 but not

completely off the mark. The model underestimates the stock market return moments since

it also underestimates the volatility of earnings growth rates.

To derive the value premium from the simulation, I follow Fama and French (1993)’s

portfolio formation method. Book-to-market (BM) portfolios are formed every July con-

ditional on the BM ratios in the last December, and the portfolios are maintained for 12

months until the next June. Again, the model-implied moments of value premium turn out

to be smaller than the empirical moments due to the underestimation of the systematic risk

of earnings growth but still stay within a reasonable range.

Lastly, the model-implied average credit spreads are 139.6 bps, which is very close to

the empirical average of 126.6 bps. Thus, one can conclude that the credit spread puzzle,

which was first introduced by Huang and Huang (2002) as the difficulty of matching the

level of credit spreads using a structural model, is now fully resolved.4

5 Conclusion

A Derivation of riskfree rate and risk-neutral measures

B Arrow-Debreu Securities

4One can refer to Chen, Collin-Dufresne, and Goldstein (2009), Chen (2010) and Bhamra, Kuehn, and
Strebulaev (2010) to study how the literature of the credit spread puzzle has developed since Huang and
Huang (2002).
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B.1 Arrow-Debreu restructuring claim if XU,2 < XU,1

X ≤ XD,2 XD,2 < X ≤ XD,1 XD,1 < X ≤ XU,2 XU,2 < X ≤ XU,1 XU,1 < X

qU,11 0 0
∑4
m=1 h11,mX

km
∑2
m=1 g11,mX

lm 1

qU,12 0 0
∑4
m=1 h12,mX

km
∑2
m=1 g12,mX

lm + λ̂1

r1+λ̂1
0

qU,21 0
∑2
m=1 s21,mX

jm
∑4
m=1 h11,m ε(km)Xkm 0 0

qU,22 0
∑2
m=1 s22,mX

jm
∑4
m=1 h12,m ε(km)Xkm 1 1

Boundary conditions

1. qU,11 at XD,1 ⇒
∑4

m=1 h11,mX
km
D,1 = 0

2. qU,11 at XU,2 ⇒
∑2

m=1 g11,mX
lm
U,2 −

∑4
m=1 h11,mX

km
U,2 = 0

3. q′U,11 at XU,2 ⇒
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m=1 g11,m lmX
lm
U,2 −

∑4
m=1 h11,m kmX

km
U,2 = 0
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∑2
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U,1 = 1
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∑4

m=1 h12,mX
km
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∑4
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km
U,2 = − λ̂1

r1+λ̂1

7. q′U,12 at XU,2 ⇒
∑2

m=1 g12,m lmX
lm
U,2 −

∑4
m=1 h12,m kmX

km
U,2 = 0

8. qU,12 at XU,1 ⇒
∑2

m=1 g12,mX
lm
U,1 = − λ̂1

r1+λ̂1

9. qU,21 at XD,2 ⇒
∑2

m=1 s21,mX
jm
D,2 = 0

10. qU,21 at XD,1 ⇒
∑4

m=1 h11,m ε(km)Xkm
D,1 −

∑2
m=1 s21,mX

jm
D,1 = 0

11. q′U,21 at XD,1 ⇒
∑4

m=1 h11,m ε(km) kmX
km
D,1 −

∑2
m=1 s21,m jmX

jm
D,1 = 0

12. qU,21 at XU,2 ⇒
∑4

m=1 h11,m ε(km)Xkm
U,2 = 0

13. qU,22 at XD,2 ⇒
∑2

m=1 s22,mX
jm
D,2 = 0

14. qU,22 at XD,1 ⇒
∑4

m=1 h12,m ε(km)Xkm
D,1 −

∑2
m=1 s22,mX

jm
D,1 = 0

15. q′U,22 at XD,1 ⇒
∑4

m=1 h12,m ε(km) kmX
km
D,1 −

∑2
m=1 s22,m jmX

jm
D,1 = 0

16. qU,22 at XU,2 ⇒
∑4

m=1 h12,m ε(km)Xkm
U,2 = 1

27



B.2 Arrow-Debreu default claim if XU,2 < XU,1

X ≤ XD,2 XD,2 < X ≤ XD,1 XD,1 < X ≤ XU,2 XU,2 < X ≤ XU,1 XU,1 < X

qD,11 1 1
∑4
m=1 h11,mX

km
∑2
m=1 g11,mX

lm 0

qD,12 0 0
∑4
m=1 h12,mX

km
∑2
m=1 g12,mX

lm 0

qD,21 0
∑2
m=1 s21,mX

jm + λ̂2

r2+λ̂2

∑4
m=1 h11,m ε(km)Xkm 0 0

qD,22 1
∑2
m=1 s22,mX

jm
∑4
m=1 h12,m ε(km)Xkm 0 0

Boundary conditions

1. qD,11 at XD,1 ⇒
∑4

m=1 h11,mX
km
D,1 = 1

2. qD,11 at XU,2 ⇒
∑2

m=1 g11,mX
lm
U,2 −

∑4
m=1 h11,mX

km
U,2 = 0

3. q′D,11 at XU,2 ⇒
∑2

m=1 g11,m lmX
lm
U,2 −

∑4
m=1 h11,m kmX

km
U,2 = 0

4. qD,11 at XU,1 ⇒
∑2

m=1 g11,mX
lm
U,1 = 0

5. qD,12 at XD,1 ⇒
∑4

m=1 h12,mX
km
D,1 = 0

6. qD,12 at XU,2 ⇒
∑2

m=1 g12,mX
lm
U,2 −

∑4
m=1 h12,mX

km
U,2 = 0

7. q′D,12 at XU,2 ⇒
∑2

m=1 g12,m lmX
lm
U,2 −

∑4
m=1 h12,m kmX

km
U,2 = 0

8. qD,12 at XU,1 ⇒
∑2

m=1 g12,mX
lm
U,1 = 0

9. qD,21 at XD,2 ⇒
∑2

m=1 s21,mX
jm
D,2 = − λ̂2

r2+λ̂2

10. qD,21 at XD,1 ⇒
∑4

m=1 h11,m ε(km)Xkm
D,1 −

∑2
m=1 s21,mX

jm
D,1 = λ̂2

r2+λ̂2

11. q′D,21 at XD,1 ⇒
∑4

m=1 h11,m ε(km) kmX
km
D,1 −

∑2
m=1 s21,m jmX

jm
D,1 = 0

12. qD,21 at XU,2 ⇒
∑4

m=1 h11,m ε(km)Xkm
U,2 = 0

13. qD,22 at XD,2 ⇒
∑2

m=1 s22,mX
jm
D,2 = 1

14. qD,22 at XD,1 ⇒
∑4

m=1 h12,m ε(km)Xkm
D,1 −

∑2
m=1 s22,mX

jm
D,1 = 0

15. q′D,22 at XD,1 ⇒
∑4

m=1 h12,m ε(km) kmX
km
D,1 −

∑2
m=1 s22,m jmX

jm
D,1 = 0

16. qD,22 at XU,2 ⇒
∑4

m=1 h12,m ε(km)Xkm
U,2 = 0
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B.3 Arrow-Debreu restructuring claim if XU,1 < XU,2

X ≤ XD,2 XD,2 < X ≤ XD,1 XD,1 < X ≤ XU,1 XU,1 < X ≤ XU,2 XU,2 < X

qU,11 0 0
∑4
m=1 h11,mX

km 1 1

qU,12 0 0
∑4
m=1 h12,mX

km 0 0

qU,21 0
∑2
m=1 s21,mX

jm
∑4
m=1 h11,m ε(km)Xkm

∑2
m=1 g21,mX

jm + λ̂2

r2+λ̂2
0

qU,22 0
∑2
m=1 s22,mX

jm
∑4
m=1 h12,m ε(km)Xkm

∑2
m=1 g22,mX

jm 1

Boundary conditions

1. qU,11 at XD,1 ⇒
∑4

m=1 h11,mX
km
D,1 = 0

2. qU,11 at XU,1 ⇒
∑4

m=1 h11,mX
km
U,1 = 1

3. qU,12 at XD,1 ⇒
∑4

m=1 h12,mX
km
D,1 = 0

4. qU,12 at XU,1 ⇒
∑4

m=1 h12,mX
km
U,1 = 0

5. qU,21 at XD,2 ⇒
∑2

m=1 s21,mX
jm
D,2 = 0

6. qU,21 at XD,1 ⇒
∑4

m=1 h11,m ε(km)Xkm
D,1 −

∑2
m=1 s21,mX

jm
D,1 = 0

7. q′U,21 at XD,1 ⇒
∑4

m=1 h11,m ε(km) kmX
km
D,1 −

∑2
m=1 s21,m jmX

jm
D,1 = 0

8. qU,21 at XU,1 ⇒
∑2

m=1 g21,mX
jm
U,1 −

∑4
m=1 h11,m ε(km)Xkm

U,1 = − λ̂2
r2+λ̂2

9. q′U,21 at XU,1 ⇒
∑2

m=1 g21,m jmX
jm
U,1 −

∑4
m=1 h11,m ε(km) kmX

km
U,1 = 0

10. qU,21 at XU,2 ⇒
∑2

m=1 g21,mX
jm
U,2 = − λ̂2

r2+λ̂2

11. qU,22 at XD,2 ⇒
∑2

m=1 s22,mX
jm
D,2 = 0

12. qU,22 at XD,1 ⇒
∑4

m=1 h12,m ε(km)Xkm
D,1 −

∑2
m=1 s22,mX

jm
D,1 = 0

13. q′U,22 at XD,1 ⇒
∑4

m=1 h12,m ε(km) kmX
km
D,1 −

∑2
m=1 s22,m jmX

jm
D,1 = 0

14. qU,22 at XU,1 ⇒
∑2

m=1 g22,mX
jm
U,1 −

∑4
m=1 h12,m ε(km)Xkm

U,1 = 0

15. q′U,22 at XU,1 ⇒
∑2

m=1 g22,m jmX
jm
U,1 −

∑4
m=1 h12,m ε(km) kmX

km
U,1 = 0

16. qU,22 at XU,2 ⇒
∑2

m=1 g22,mX
jm
U,2 = 1
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B.4 Arrow-Debreu default claim if XU,1 < XU,2

X ≤ XD,2 XD,2 < X ≤ XD,1 XD,1 < X ≤ XU,1 XU,1 < X ≤ XU,2 XU,2 < X

qD,11 1 1
∑4
m=1 h11,mX

km 0 0

qD,12 0 0
∑4
m=1 h12,mX

km 0 0

qD,21 0
∑2
m=1 s21,mX

jm + λ̂2

r2+λ̂2

∑4
m=1 h11,m ε(km)Xkm

∑2
m=1 g21,mX

jm 0

qD,22 1
∑2
m=1 s22,mX

jm
∑4
m=1 h12,m ε(km)Xkm

∑2
m=1 g22,mX

jm 0

Boundary conditions

1. qD,11 at XD,1 ⇒
∑4

m=1 h11,mX
km
D,1 = 1

2. qD,11 at XU,1 ⇒
∑4

m=1 h11,mX
km
U,1 = 0

3. qD,12 at XD,1 ⇒
∑4

m=1 h12,mX
km
D,1 = 0

4. qD,12 at XU,1 ⇒
∑4

m=1 h12,mX
km
U,1 = 0

5. qD,21 at XD,2 ⇒
∑2

m=1 s21,mX
jm
D,2 = − λ̂2

r2+λ̂2

6. qD,21 at XD,1 ⇒
∑4

m=1 h11,m ε(km)Xkm
D,1 −

∑2
m=1 s21,mX

jm
D,1 = λ̂2

r2+λ̂2

7. q′D,21 at XD,1 ⇒
∑4

m=1 h11,m ε(km) kmX
km
D,1 −

∑2
m=1 s21,m jmX

jm
D,1 = 0

8. qD,21 at XU,1 ⇒
∑2

m=1 g21,mX
jm
U,1 −

∑4
m=1 h11,m ε(km)Xkm

U,1 = 0

9. q′D,21 at XU,1 ⇒
∑2

m=1 g21,m jmX
jm
U,1 −

∑4
m=1 h11,m ε(km) kmX

km
U,1 = 0

10. qD,21 at XU,2 ⇒
∑2

m=1 g21,mX
jm
U,2 = 0

11. qD,22 at XD,2 ⇒
∑2

m=1 s22,mX
jm
D,2 = 1

12. qD,22 at XD,1 ⇒
∑4

m=1 h12,m ε(km)Xkm
D,1 −

∑2
m=1 s22,mX

jm
D,1 = 0

13. q′D,22 at XD,1 ⇒
∑4

m=1 h12,m ε(km) kmX
km
D,1 −

∑2
m=1 s22,m jmX

jm
D,1 = 0

14. qD,22 at XU,1 ⇒
∑2

m=1 g22,mX
jm
U,1 −

∑4
m=1 h12,m ε(km)Xkm

U,1 = 0

15. q′D,22 at XU,1 ⇒
∑2

m=1 g22,m jmX
jm
U,1 −

∑4
m=1 h12,m ε(km) kmX

km
U,1 = 0

16. qD,22 at XU,2 ⇒
∑2

m=1 g22,mX
jm
U,2 = 0
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