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Abstract 

This paper provides estimators of the realized third and fourth order (joint) cumulants, which 

are standardized (co)moments, for arithmetic returns with one assumption under which each 

price is a martingale. The estimators that are developed based on Aggregation Property of 

Neuberger (2012) help to access the ex-post moments of returns for a specific period and do 

not require data for a long period. Moreover, we show that neither realized fourth moments nor 

third comoments of log returns exist under the similar condition. In addition, we conduct an 

empirical study based on the realized higher order cumulants and the results are consistent with 

the literature. 
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I. Introduction 

Large size of sample can reduce estimation errors of sample moments. Therefore, if returns 

of assets are i.i.d., we can get accurate estimates of moments of returns by increasing the sample 

size. However, distribution of asset returns appears to be time varying and it is prominent when 

there is a shock in the market as a series of financial crises show (Engle 1982; Ang and 

Timmermann 2012; Baur 2012). Thus there is a tradeoff between sample size and outdated data. 

In the case of the second moment, there are some remedies for this problem. One of them is 

putting more weight on the recent data as EWMA of J.P. Morgan or GARCH of Bollerslev 

(1986). Another solution is considering the recent high frequency data as Andersen et al. (2003) 

propose. When we estimate a variance of asset return for a specific period with returns in the 

period only, information of the other period is excluded. Therefore, it helps to understand the 

period clearly.1 In addition, it helps to get moments of newly issued securities, which have 

limited data period. Basically, estimation of variance with high-frequency data is in line with 

the following equality for a martingale process F. 
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After Markowitz, second moments of returns have been used to measure risk of assets. 

However, many theoretical and empirical studies show that the third and the fourth moments 

are also related to returns of securities (Kraus and Litzenberger 1976; Harvey and Siddique 

2000; Dittmar 2002; Ang et al. 2006; Conrad, Dittmar and Ghysels 2013). When a return of a 

securities follows normal distribution, the first and the second moments of the return are 

enough to understand distribution of the return fully. However, as many studies including Fama 

(1963) provide counterevidence of the normality, estimation of the third and the fourth 

moments has been an important issue. 

Conrad, Dittmar and Ghysels (2013) obtain individual securities’ implied skewness and 

kurtosis via method of Bakshi, Kapadia and Madan (2003) and they show a negative (positive) 

relation between skewness (kurtosis) and the subsequent return. Amaya et al. (2015) show the 

                                                           
1 Some studies use realized variance to understand the characteristics of the market. For example, Jiang and 

Tian (2005) test whether the implied volatility really forecasts the realized volatility of the future period, and 

Bollerslev, Gibson and Zhou (2011) estimate volatility risk premium from the implied volatility and realized 

volatility. 
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similar result with the past realized skewness and kurtosis from high frequency data. However, 

aside from the interesting result, time horizon of the measures of Amaya et al. (2015) is 

arguable because their skewness is a sample skewness of a return for a short period, 5-minute, 

although coverage of the samples is equal to the time horizon of their study, a week.2  

This problem arises because Equation (1) is not directly extended to the higher order 

moments. Therefore, in general, we require additional assumptions to get realized higher order 

moments. An example for the assumptions is that returns are i.i.d.. Then, realized third moment 

can be estimated with 
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3 . However, Neuberger (2012) provides a counter evidence about 

it; according to the empirical result, third moment of N-period return does not appear to be N 

times of third moment of 1-period return. Hence when there is no undisputed assumption, high 

frequency data cannot yield appropriate moments of low frequency. For example, when we 

want to estimate the third moment of a return for a specific year, with daily returns of the year, 

it just provides one observation, a cube of a return for the year. 

In the case of the third moment, this problem is relieved by Neuberger (2012). The author 

generalize Equation (1) with a name of Aggregation Property, and confirms that we cannot 

obtain moments over the second order when the provided information is limited to the price 

process F. Moreover, he shows that we can also obtain the third moment and no higher order 

moments when the information is extended to include variance process additionally. Inclusion 

of the variance process (only) is reasonable because of its importance as we see some 

derivatives are quoted with volatility of their underlying assets. However, implied higher order 

moments can also be obtained as Bakshi, Kapadia and Madan (2003) show. Furthermore, 

Conrad, Dittmar and Ghysels (2013) show the importance of the implied fourth moment as 

well as the third moment. As the finance literature emphasizes the importance of the fourth 

moment, we want to extend the study to get realized fourth moments.  

Beside of the moments of individual assets, Harvey and Siddique (2000) emphasize 

coskewness as well as covariance. In the case of covariance, like Equation (1), we have the 
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following relation given two martingale processes tF ,1  and tF ,2 . 
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However, as above, higher order comoments are not obtainable just with price processes, 

tF ,1  and tF ,2 . Neuberger (2011) investigates coskewness although it is omitted in the 

published version. The study provides new perspective with a new definition of coskewness as 

a sensitivity of expected realized skewness with respect to the investments. A point that it is 

defined without covariance process improves its accessibility and usefulness in the future 

studies. However, another point that the coskewness is not developed based on the traditional 

definition arises a weak link from the other studies so far. Therefore, we also investigate the 

realized joint moments, likewise coskewness or cokurtosis, in line with the literature. 

This paper also presents empirical results. As mentioned above, BKM’s methodology makes 

it possible to get higher order implied moments for a single security. Accordingly we can get 

realized higher order moments for a single security. By contrast, estimation of comoment has 

a practical problem. That is, while we require lower order implied comoments to get a realized 

comoment, implied comoments are hardly accessible because they require exotic options like 

basket options or spread options. We partially solve this problem by adopting Kempf, Korn and 

Saßning (2015).3 

Finance literature mostly uses log returns instead of arithmetic returns because short term 

returns are easily transferred to long term returns and vice versa because of additivity of log 

returns. However, we do not require the transformation when the sample period coincides to 

the time horizon as we get the realized moments. In addition, arithmetic returns are more 

adequate than log returns when we deal with the asset allocation for a fixed time horizon. 

Therefore this paper concentrates on the moments of arithmetic returns although we also 

address the realized moments of log returns.  

The rest of the paper is organized as follows. Section II reviews about the Aggregation 

Property and investigates some properties about higher-order moments and comoments. 

Section III discusses method to get implied moments or comoments in advance for estimation 

                                                           
3 Kempf, Korn and Saßning (2015) calculate implied covariance just with index and individual 

options through an assumption of index model and an additional assumption about idiosyncratic risk. 

As a result, they show that this covariance is effective in asset allocation. 
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of realized moments. Section IV presents empirical results about realized moments. Section V 

concludes this study. 

 

 

II. The Aggregation Property Given Comoment Processes 

Let )0,( TtXX t   be an adapted vector valued stochastic process defined on a 

filtration. Then, the Aggregation Property is defined as follows. 

 

Definition 1. The Aggregation Property (Neuberger 2012) 

A function g on a vector valued process X has the Aggregation Property if and only if  

      )()()( ststussus XXgEXXgEXXgE  , ),,( uts  s.t. Tuts 0 . (3) 

 

When the definition is combined with a law of iteration, we have a following relation for 

any partition Tttt N  100 : 
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Therefore  

 



N

j

jXg
1

)(  (5) 

is called a realized measure of 

  )( 00 XXgE T   (6) 

because the expression (5) is an ex-post estimator of (6). For example, for a martingale process 

S,  

                                                           
4 Hereafter, for a convenience, jt  is denoted by j  and 1 jj XX  and 1,,   jj XX  are denoted 

by jX  and jX ,  respectively. 
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because 2)( xxg   satisfies Equation (3). Similarly, when )(var Ttt SV  ,  
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because VSSVSg  3)(),( 3
 satisfies Equation (3) and the following holds: 
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Therefore Neuberger names (9) as realized third moment, (10) as a true third moment, and 

 3

00 )( SSE T

Q  , which is obtained from prices of derivatives, as an implied third moment.  

Neuberger shows that there are no additional higher order moments when the information 

process tX  is defined as ),( tt VS . It implies that we may get realized higher moments or 

comoments if we extend the information process tX . Because of the importance of the third 

and fourth (co)moments, we investigate the (co)moments given information of lower order 

moments. Therefore let tX  be a vector valued process }0:)'',,{( ,2,1 TtMSS ttt 


, where 

 )',,,,,,( 3,02,11,20,32,01,10,2 MMMMMMMM 


 (12) 
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Then, Proposition 1 provides a general form of functions which have the Aggregation Property 

on X . 
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Proposition 1. When 
1S  and 

2S  are martingale processes, a two dimensional analytic 

function g has the Aggregation Property on the vector valued process X if and only if g can be 

represented as follows: 
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for some constants }21,...,1{, ihi . 

Proof is in the Appendix.  

 

For convenience, when we arrange the terms which is related to the 
lkSS 21  with lk  , the 

function with the Aggregation Property is represented with 12 individual terms as follows: 
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In Equation (14’), the Aggregation Property of 1S , 2

1)( S  and 0,21

3

1 3)( MSS   are 

shown in the Neuberger, and the Aggregation Property of lkM ,  is obvious. Among 

remainder terms, 21 SS   is a well-known estimator of covariance. The 8th, 10th, 11th, and 12th 

terms are introduced from this paper, to the best of our knowledge.  

First, let us deal with the 8th term. We can observe that 2

2

1)( SS   does not solely appear 

and requires additional terms. Furthermore, when a function g is defined as 

 0,221,112

2

1 2)()( MSMSSSXg  , (15) 

the following equation holds 
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Therefore, although  
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 is related to the third comoment, it is not unbiased 

toward the true realized third comoment. To be an unbiased estimator, additional terms should 

be added. In other words, the following form plays as a realized third comoment 
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where cbacTM ,,  denotes an estimator of  

  ))()(( 0,,0,,0,,0 cTcbTbaTa SSSSSSE  .5 (18) 

                                                           
5 The superscript ‘real’ represents that it is a realized moment. Afterward, TM is replaced by FM for the fourth 

cumulant which is linked to the fourth moment. Accordingly, FMa denotes an estimator of the fourth cumulant 
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Therefore, if 1S  becomes more (less) volatile while 2S  is increasing, third comoment during 

[0, T] is higher (lower). In addition, if the covariance between returns is increasing (decreasing) 

while 2S  is increasing, third comoment during [0, T] is higher (lower). From a series of 

financial crises, we observe that covariance of returns is increasing when one of the return 

decreases, which is known as contagion effect and interdependence (Allen and Gale 2000; 

Forbes and Rigobon 2002; Cespa and Foucault 2014). It implies that if we measure third 

comoment with  
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Now let us investigate the fourth moment and comoments. Because 0,, TlkM , we have a 

following relation from the 10th term of Equation (14’). 
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Light hand side of Equation (19) is not the fourth moment. However, it is also an important 

measure, the fourth cumulant, which is a numerator of kurtosis. Therefore 
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is an estimator of the fourth cumulant, realized fourth cumulant. Like the third moment case, 

4

,1 )( jS  does not solely appear in the fourth cumulant. Among the other terms, 

2
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In addition, from the relation, ])([ 2
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approximation: 
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Therefore the fourth cumulant is greater when variance (until the maturity) and instantaneous 

                                                           

of Sa,T - Sa,0 and cFMa,b,c,d denotes an estimator which is related to the fourth comoment,  

E0[(Sa,T-Sa,0)(Sb,T-Sb,0)(Sc,T-Sc,0)(Sd,T-Sd,0)] 
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variance are more correlated. Accordingly, omitting this term, or replacing this term with 

variance square, can cause a negative bias about the fourth cumulant because empirical studies 

report positive autocorrelation of variance, which is known as volatility clustering of  

Mandelbrot (1963). The remainder in Equation (20), jj MS ,0,3,14  , implies that fourth 

cumulant is greater when return and change of the third moment are more correlated.  

In the same manner, realized fourth order joint cumulants are defined from the 11th and 12th 

term of Equation (14’) as follows:6 
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Applying these realized cumulants allows us to define the third and the fourth comoment swaps 

described in Table 1. These swaps can be hedged with some securities as Proposition 2 

describes. 

 [Table 1 about here] 

Proposition 2. Higher order (co)moment swaps 

When we define higher order (co)moment swaps as Table 1 describes, each swap can be 

replicated with assets 1S , 2S , risk free asset, and the securities that pay TS ,1 , TS ,2 , 
2

,1 TS , 

TT SS ,2,1 , 
3

,1 TS , TT SS ,2

2

,1 , or 
2

,2,1 TT SS  at time T. 

Proof is in the appendix. 

                                                           
6 Note that the third order joint cumulant of (X1, X2, X3) and the fourth order joint cumulant of (X1, X2, X3, X4) 

are E[X1X2X3] and E[X1X2X3X4] - E[X1X2]E[X3X4] - E[X1X3]E[X2X4] - E[X1X4]E[X2X3] respectively when 

expectation of each Xi is zero. Therefore, (16) is the third order joint cumulant as well as the third comoment 

because each Si is martingale. Similarly, (11) is the third cumulant. 
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One may wonder about the Aggregation Property for log prices because of log returns’ 

merits like an additivity over time. However when we consider asset allocation among several 

assets, arithmetic return is more natural than geometric return. So we want to focus on the 

Aggregation Property with arithmetic returns but a generalized function with the Aggregation 

Property for log price series is also given as the next propositions. Like in the case of arithmetic 

return, the Aggregation Property is meaningful when we can find some realized moments. To 

explore realized moments in a general sense, we define generalized comoments and realized 

comoments as follows: 

 

Definition 2. A generalized (k,l)-comoment function 

We call 
lkf ,

 a generalized (k,l)-comoment function if and only if 
lkf ,

 is a two 

dimensional analytic function such that 1
),(

21

21

,


lk

lk

ss

ssf
 as )0,0(),( 21 ss . In addition, a 

generalized (k,0)-comoment function or a generalized (0,k)-comoment function is shortly called 

a generalized k-moment function and denoted as one dimensional function kf .  

 

Definition 3. A realized (k,l)-comoment element 

Let )',,( 21 mssx   be a partitioned vector process where m consists of lkm ,  such that 

))]()(),()(([)( 2211

,

, tsTstsTsfEtm lk

tlk   for a generalized (k,l)-comoment function 
lkf ,
. 

Then, a function g with the Aggregation Property is called a realized (k,l)-comoment element 

if and only if it is decomposed as follows 

 ),()()( ,2,2,1,1

,

tt

lk

rtt ssssgxxxxg     (25) 

where η is a function that satisfies 0)]([  tt xxE   for t  and 
lk

rg ,
 is a function that 

satisfies the condition of a generalized (k,l)-comoment function. In addition, a realized (k,0)-

comoment element or a realized (0,k)-comoment element is shortly called a realized k-moment 

element. 
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As Neuberger shows, there is a realized (3,0)-comoment element with the following 

decomposition: 
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However, as shown in the next propositions and corollaries, we cannot get other realized 

moments under our condition; realized (2,1)-comoment element or realized (4,0)-comoment 

element does not exist. We finish this section with presenting two propositions and two 

corollaries. In the propositions, si,t denotes ln(Si,t) for a martingale process Si, and mk,l,t denotes 

)],([ ,,2,1,1, tsTtTlkt ssssfE   with a generalized (k,l)-comoment function 
lkf ,
 or 

kf  when 

l=0.  

 

Proposition 3. When )',,( 0,30,21 mmsx   is a vector valued process on 0≤t≤T, an analytic 

function g has the Aggregation Property on the vector valued process x if and only if, for some 

constants *h , g is represented as follows: 
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with one of the following 3 conditions: 

i) 065  hh . 

ii) 06 h  and )1(2)()( 32  sesafsf s
 for a constant a. 

iii) 05 h  and )1(2)()( 32  ss esesafsf  for a constant a. 

Proof is in the Appendix B. 

 

Corollary 4. When )',,( 0,30,21 mmsx   is a vector valued process on 0≤t≤T, there is no 

realized 4-moment element. 

Proof is in the Appendix B. 
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Proposition 5. When )',,,,( 1,12,00,221 mmmssx   is a vector valued process on 0≤t≤T, a 

multidimensional analytic function g has the Aggregation Property on the vector valued 

process x if and only if, for some constants *h , g is represented as follows: 
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with one of the following 5 conditions: 

i) 0141312  hhh , )1(),( 1

221

1,1 
s

esssf , and )1(2)(2  sesf s
. 

ii) 0141311  hhh , )1(),( 2

121

1,1 
s

esssf , and )1(2)(2  sesf s
. 

iii) 014131211  hhhh  and )1(2)(2  sesf s
. 

iv) 012111098  hhhhh  and )1(2)(2  ss esesf . 

v) 0141312111098  hhhhhhh . 

 

Proof is in the Appendix B. 

 

Corollary 6. When )',,,,( 1,12,00,221 mmmssx   is a vector valued process on 0≤t≤T, there is no 

realized (2,1)-comoment element. 

Proof is similar to the proof of Corollary 4. 

 

III. Practical issues on the estimation 

In this section, we investigate estimators of the third and the fourth cumulants for the real 

data. Since Proposition 1 holds only if each security is martingale, we use forward price for 



14 

 

each jiS , .7 Hereafter, each price represents itself normalized by initial price. Accordingly, 

0,, iTi SS   implies return between time 0 and T. By contrast with the price jiS , , moments of 

prices are not directly observed. However, according to Bakshi, Kapadia and Madan (2003), 

we can get an expectation of a twice-continuously differentiable function of jiS ,  when there 

are continuum of European calls and puts. By adopting their method, implied moments of 

jiTi SS ,,   are given as follows: 
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where )(xPj  is a forward price of a put option at time j with an exercise price x and a maturity 

T. In addition, )(xC j  is a forward price of a call option defined as )(xPj . 

By contrast with the moments of a single security, comoments between securities are not 

obtainable only with individual European options. Instead, adopting some exotic options makes 

it possible to get the comoments. For example, when we have continuum of basket options or 

spread options, Equation (29) with n=2 makes us to get )(var ,2,1 TTj SS   or )(var ,2,1 TTj SS  . 

When it is combined with Equation (30), we can get covariance as follows: 
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  (30) 

Similarly, if we have continuum of basket options and spread options in addition to the 

individual options, we can get third moment of TT SS ,2,1  . Therefore we obtain third 

comoment due to Equation (31) with jT SSA ,1,1   and jT SSB ,2,2   as follows: 

 
6

][2])[(])[(
][

333
2 BEBAEBAE
BAE


  (31) 

 

Practically, basket options or spread options, composed with individual security and market 

                                                           
7 Remind that prices are derived through the risk neutral measure while they evolve under the real 

measure. Therefore both of the implied moment and the realized moment in this paper can be understood 

as proxies. Bias of the estimate due to the different probability measure is the payoff of hedging strategy 

of each swap in the proof of Proposition 2. Hereafter, we represent expectations in terms of the risk 

neutral measure. 
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index, are not enough to get the implied second and third comoment. However, as Kempf, Korn 

and Saßning (2015) point, index options are already basket options because indices are 

portfolio of individual options. Thus following two assumptions make it possible to get 

covariance between return of individual stock and index. One of them is that asset returns 

follow an index model with time varying α and β. Then, at each time tj, conditional distribution 

between a stock index (SM,T) and an each stock price (Si,T,) are represented as follows: 

 TttIiSS NjjiTMjijiTi  0},,...,1{,,,,,,  . (32) 

The second assumption is that ratio of idiosyncratic risk over total risk is same, j1  with 

10  j , for all securities at each time tj. The combination of these two assumptions yields 

that jMjjiji VV ,,

2

,    or 

 
jM

ji

jji
V

V

,

,

,   . (33) 

where )(var ,, Tijji SV   and )(var ,, TMjjM SV  . Because a beta of the index portfolio is one, 

1
1

,, 


I

i

jijiw   holds. And this condition yields  

 
 2

1 ,,

,

 


I

i jiji

jM

j

Vw

V
 . (34) 

Hence, the covariance between the price and the index are represented as follows: 

 ),(cov ,,, TMTijji SSC   

jMji V ,,  

Mijij VV ,,  

jMI

i jiji

ji
V

Vw

V
,

1 ,,

,

 

  (35) 

Therefore, a realized third comoment is represented as follows: 

   



N

j

jijMjMjijijM

real

iMM CSVSSScTM
1

,,,,,

2

,,, 2 .  (36) 
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Higher order moments are generally provided with standardized form. Among several ways 

that standardize the third comoment, Kraus and Litzenberger (1976) define coskewness as 

 
M

iMM

i
TM

cTM ,,
  (37) 

In addition, they show the relation as follows: 

   21  iiiRE   (38) 

where iR  is a return of the asset i. By adopting the same definition, a realized coskewness is 

defined as 
real

M

real

iMMreal

i
TM

cTM ,,
  with  

   



N

j

jMjMjM

real

M VSSTM
1

,,

3

, 3  (39) 

Additionally one can show that implied gamma at time zero imp

i  is same with 0,i  under 

our assumption, the market model. 

 

 

IV. Empirical study 

The focus of the analysis is two folds. The first part investigates behaviors of the cumulants 

of S&P 500 returns. And the second is about relations between lagged cumulants of individual 

stock returns and subsequent returns for the components of Dow Jones Industrial Average 

(DJIA). For the analysis, implied volatilities, prices of underlying securities, dividends, and 

risk-free rate from January 1996 to August 2014 are used. We get those of S&P 500, and the 

components of DJIA from Option Metrics through WRDS. To get continuum of option prices 

for each strike price, we use the methodology of Carr and Wu (2009) and Neuberger (2012), 

after options with zero bid price are deleted.  

 

IV.1. Cumulants of the S&P 500 returns 
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Table 2 shows descriptive statistics of cumulants of the S&P 500 returns. It shows that each 

realized value is closer to sample values than implied values, in the case of monthly and 

quarterly returns, although standard deviations of realized values are greater than those of 

implied values. However, in the case of annual returns, implied values are closer to sample 

values with small standard deviations. In addition, returns are less negatively skewed and less 

leptokurtic as time to maturity increases. This pattern could be related to i.i.d. returns, because 

moment of n-period return is n times moment of 1-period return when return of multi-period is 

additive and each 1-period return is i.i.d.. However as shown in Table 3, adjusted skewness and 

adjusted kurtosis are not appears to be constant.8 It can be from ignored compounding of 

arithmetic return but it holds even when the compound effect is small; they are different even 

in the 1-month and 3-month comparison. It implies that sum of nth order returns of sub-periods 

cannot generate nth order moment of a full period. 

 [Table 2 about here] 

 [Table 3 about here] 

Since the real probability measure is different from the risk neutral measure, the process of 

the price is not genuine martingale. Therefore, using the implied second and third moments to 

get the realized fourth cumulants arises a question of whether the fourth cumulants are reliable. 

To clarify the validity of lower order implied moments, Table 4 represents time series 

regression of each realized value on implied and lagged realized values. According to Table 

4.A, both implied and lagged realized moments are significant in the univariate regression of 

the second and the third moments. In addition, implied moments are significant even in the 

two-variable regression of the second and the third moments while the significances of lagged 

realized moments vanish. Therefore using the implied second and third moments to yield the 

realized fourth cumulants is justified in some sense. Now let us deal with standardized moments, 

which are skewness and kurtosis. Both implied and lagged realized terms are significant in the 

regression of both skewness and kurtosis. Therefore lagged realized kurtosis provides some 

information to future realized kurtosis.  

The properties of the second and the third moments are also valid in the quarterly and 

semiannual returns; both the implied and lagged realized moments are significant in the 

univariate regression, and implied moments are significant in the two variable regression. 

                                                           
8 The period adjusted skewness is skewness of monthly return which is calculated by sample skewness of return 

of various period under the i.i.d. returns. 
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However, they are insignificant in the annual analysis. In addition, implied skewness and 

kurtosis are significant as like the monthly case. But lagged realized terms are mostly 

insignificant. 

 [Table 4 about here] 

 

IV.2. (Joint) cumulants of returns and subsequent returns 

This section investigates relations between cumuanlts of returns and subsequent returns on 

a month-end by month-end basis. Because expirations of the options are not the end of the 

month, as a proxy, we use interpolated 30-day volatilities of options from volatility surface of 

Option Metrics for each day. This analysis, based on the end of the month, provides similar 

results to the analysis based on the expiration of the options. However, this makes it easy to get 

risk adjusted returns based on Fama and French (1993). 

 [Table 5 about here] 

Table 5 shows average of regression results about comoments. Panel A is about average of 

time series regression for each security, and Panel B is about average of cross sectional 

regression for each time. These show that implied comoments have the greatest determinant 

coefficient among the univariate regressions in the both of time series and cross sectional 

analysis. In addition, it shows that using the implied covariance to yield the realized third 

comoment is reasonable.  

 

 [Table 6 about here] 

Table 6 compares portfolio’s return and moments after it is constructed based on implied or 

realized moments. Panel A represents return, moments, and comoments after it is constructed 

based on the rank of implied variance. It shows that portfolios keep their order of variance. In 

other words, a portfolio with the greatest (smallest) implied variance precedes the greatest 

(smallest) realized variance and the difference between the realized variances is significant. 

However, the difference of the returns is insignificant. Panel B – Panel G shows the similar 

results; portfolios keep their order of moments with significant differences but the differences 

of returns are insignificant. Despite the insignificance of the differences of returns, sizes of the 

differences are not economically ignorable. For the robustness, Table 7 provides the 
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performances with controlling risk of the other sources while the portfolios in the Table 6 are 

constructed without controlling risk of the other sources.  

 [Table 7 about here] 

 

Panel A of Table 7 shows that a portfolio constructed from small implied volatility takes 

high return. However, it is vague whether the result is based on the idiosyncratic volatility risk 

solely because implied beta or implied gamma is equivalent to the implied variance under the 

assumption of market model. To decompose the effects among idiosyncratic volatility, beta, 

and gamma, we construct the portfolios based on lagged realized moments. Panel D, E, and F 

show that all of idiosyncratic risk, beta, and gamma are linked to the returns of portfolios; 

portfolios with low variance, beta, and gamma are along with high return which is consistent 

with the Panel A. Likewise, other panels show the link between higher order moments and 

returns of portfolios. Although Panel B and C show insignificant difference of the zero cost 

portfolios, the size of the return is not economically ignorable. In addition, Panel G and H show 

that portfolios with low skewness and high kurtosis are along with high return. Hence the 

results, which use the realized moments, are generally in line with the literature; for example, 

high beta is linked with low return as Frazzini and Pedersen (2014), and low gamma is linked 

to high return as Harvey and Siddique (2000), and low skewness or high kurtosis is linked to 

high return as Amaya et al. (2015) and Conrad, Dittmar and Ghysels (2013). 

 

V. Concluding Remark 

In spite of importance of higher-order moments of returns, estimation of realized higher 

order moments is not as simple as estimation of the second moments. Neuberger (2012) takes 

advantage of variance process to solve this problem for the third moment. Moreover he shows 

that there is no higher order realized moments under this information set. As lots of studies 

emphasize importance of kurtosis or comoments as well as the skewness, we develop the 

realized fourth cumulant and the realized comoments. Although lack of exotic options limits 

the accessibility of the comoments, we address a solution about it. In addition, predictability of 

the implied lower-order comoments about the realized comoments supports the solution of this 

study.  
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In addition, we conduct several empirical tests about the realized moments. All the realized 

moments are explained with implied moments with greater determinant coefficients. It implies 

both the realized and implied moments are well functioning. Finally, the relations between 

realized moments of returns and subsequent returns coincide with the literature. Since the 

realized moments make it possible to understand the distribution of a return of asset for a 

specific period, we hope this measure to be applied in several studies in the future. 
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Appendix A: Proofs of Proposition 1 and 2. 

Proof of Proposition 1. 

Consider processes S1(t) and S2(t) for }2,1,0{t  and a moment vector process 

),,,,,,( 3,02,11,20,32,01,10,2 MMMMMMMM 
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The Aggregation Property implies 0)0,...,0( g  and 
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or 

   mssgE


 ,, 21,211,1      


 ,,,, 211,21,1 gEmssg . (A5) 

Because Equation (A5) holds when )0,0(),( 1,21,1 ss , 

   mgE


,, 21      


 ,,,0,0 21gEmg . (A6) 

Differentiating Equation (A6) with respect to 2km  yields Equation (A7) 

   mgE k


,, 21   mgk


 ,0,0  (A7) 
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where kg  is a partial differentiation with respect to the (k-2)th term of the M. i.e. 
0,2

3
M

g
g




 , 

1,1

4
M

g
g




 , … , 

3,0

9
M

g
g




 . 

When we substitute m


  into (A7), 

     0,0,0,0,0,, 21 kk ggE   (A8) 

Therefore, for a constant 0,ka  and functions ,*kA , kg  is represented as follows: 
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 (A9) 

Substituting )2()2(   ll m


  and (A9) into the (A7) yields following:9 

 ))(0,..0,,0,...0())(( 2222,22,   lllllklllk mmAmmA 


, l=3,..,9. (A10) 

Since  , jis , ,   are arbitrary, 9,3, ,, kk AA   are constants. 

 

)()()(

)()()(

)()()(),,(

3,0

3

29,2,1

2

218,1,22

2

17,

0,3

3

16,2,0

2

25,1,1214,

0,2

2

13,22,11,0,21

MsaMssaMssa

MsaMsaMssa

MsasMAsMAaMssg

kkk

kkk

kkkkk







 (A11) 

Now let us simplify 1,kA  and 2,kA . Differentiating (A5) with respect to 2km yields: 

   mssgE k


 ,, 21,211,1   mssgk


 ,, 1,21,1 . (A12) 

Substituting (A11) into (A12) yields 

 
 
  1,22,09,1,18,0,27,2,2,

1,12,08,1,17,0,26,1,1,

32)()(

23)()(

saaamAmA

saaamAmA
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 (A13) 

Because Equation (A13) is valid for arbitrary   and s , 

 1,2,08,1,17,0,26,1, 23)( kkkkk aMaMaMaMA   (A14) 

 2,2,09,1,18,0,27,2, 32)( kkkkk aMaMaMaMA   (A15) 

for some 1,ka  and 2,ka . Therefore we obtain the following  

                                                           
9 i


 represents 


 without the ith element. For example, ),...,,( 3,02,01,11  


. im


 is 

defined similarly. 
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When 3k , integrating (A16) with respect to 2kM  yields Equation (A17). 
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Similarly, we can get alternative forms of ),,( 21 Mssg  adopting 9...4k . When we combine 

these forms, ),,( 21 Mssg  can be represented as 

 ),(),;(),,( 212121 ssgssMgMssg sM   (A18) 

where 
Mg  is a multivariate polynomial whose coefficients are (multivariate polynomial) 

functions of 
1s  and 

2s  with a condition of 0),;0( 21 ssgM


 and sg  is a function of 
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2s   with 0)0,0( sg  because 0)0,0,0( 


g . 

Substituting (A18) and 


m  into Equation (A5) and multiplying 2/2 k  yields: 
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with some polynomial 1pg  because 
Mg  is a multivariate polynomial. Similarly adopting 
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with some polynomial 2pg . 

Now consider an alternative form of (A19) 
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Next, when we substitute 
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 (A23) 

as )0,0(),( 21 kk  with some polynomial 3pg . (A20), (A21), and (A23) implies that 

),,( 21 Mssg  is a polynomial of 
1s , 

2s , 0,2M , … and 3,0M .  

Now let us substitute ),( 2211 SlSl  into ),( 21 SS  for the function g. Since g satisfies the 

Aggregation Property for any 
1l  and 

2l , each coefficient of 21

21

kk
ll  also satisfies the 

Aggregation Property. Hence, for the coefficients of 21

21

kk
ll , we can construct a spanning set of 

functions that has the Aggregation Property and it is represented in Table A1 for 
21 kk  . 

 [Table A1 about here] 

Note that, in the case of )0,4(),( 21 kk , 
2

0,2M  and 
2

10,2 sM  come together as the form 









 2

10,2

2

0,2
2

1
sMM  rather than represented separately. It is due to the form of Equation (A17). 

Some of the other combined terms are from alternatives of (A17) that are omitted in this paper.  

According to Neuberger, 
1s , 

2

1s , 0,2M  and 0,21

3

1 3 Mss   satisfies the Aggregation Property. 

In addition, every jiM ,  also satisfies the Aggregation Property by definition of jiM , . Now let 

us consider a case of )1,2(),( 21 kk . Substituting  

 1,240,2231,1122

2

1121 ),,( MbMsbMsbssbMssg   (A24) 
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into Equation (A5) yields 

 0,21,231,11,120,21,21,11,11 )2(  sbsbssb   (A25) 

Therefore 132 22 bbb   and 13 bb   because   and s are arbitrary numbers. It implies that 

expression (A26) is a candidate for a function with the Aggregation Property. 

 1,240,221,112

2

11 )2( MbMsMsssb   (A26) 

Similarly we can try for the other pairs of ),( 21 kk  and the result is arranged in the Table A2. 

Without loss of generality, we can let )3,2,1,0(),,,( Tuts  in Equation (3) and 
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for 3,2,1,0  and Ri,j such that   0,1  jij RE . Then each element of the Table A2 satisfies 

Equation (4). 
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Proof of Proposition 2. 

Consider the securities that pay TS ,1 , TS ,2 , 
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Left hand side of (A28) describes the difference between receiving leg and paying leg of the 

third comoment swap described in Table 1. In addition, right hand side of Equation (A28) 

describes strategy of a self-financing portfolio which is managed with securities that pay TS ,1 , 

TS ,2 , 
2

,1 TS , or TT SS ,2,1  at T. Therefore (A28) shows the fairness and replicability of the third 

comoment swap.  

To deal with the properties about the fourth moment swap and non-zero fourth moment swap, 

we represent the following equality: 
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 (A29) 

Left hand side of Equation (A29) with a=0 describes the difference between receiving leg and 

paying leg of the non-zero fourth moment swap. Since the right hand side of Equation (A29) 

describes strategy of a self-financing portfolio with initial cost 
2

0,0,23M  when a=0, we see the 

fairness and replicability of the non-zero fourth moment swap. Similarly, we can see the 

properties about the fourth moment swap, non-zero asymmetric fourth comoment swap, 

asymmetric fourth comoment swap, non-zero symmetric fourth comoment swap, and 

symmetric fourth comoment swap from Equation (A29) with a=1, Equation (A30) with 

(a1,a2)=(0,0), Equation (A30) with (a1,a2)=(a,1-a), Equation (A31) with (a3,a4,a5)=(0,0,0), and 

Equation (A31) with (a3,a4,a5)=(a,1-a,1) respectively. 
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Appendix B: Proofs of Proposition 3 and 5 and Corollary 4. 

Common property B. 

Consider processes )(1 tS  and )(2 tS  for }2,1,0{t  and moment vector processes 

),,,,,,( 3,02,11,20,32,01,10,2 MMMMMMMM 


 

In addition assume 
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 (B1) 

with 1
1




n

j

j , 0)exp(
1

, 


n

j

jij s , 1)][exp( iE  ,   lk

lkfE ,1

, ),(   , 

),,( 3,00,2  

 , and )0(Mm


  

where  

  


n

j jj

lk

j

lk

lk ssfssfEm
2 21

,

21,211,1

,

1, ),()],([   (B2) 

and 
lkf ,

 is a generalized moment function such that 0)0,0(, lkf  and 

1
),(

lim
,

)0,0(),(


 lk

lk

ba ba

baf , ),(),( ,, abfbaf lkkl  , and ),()( 0, bafaf kk  . 

 

Again, g(0,…,0)=0 and Equations (A5) - (A12) hold here. Let us represent some of them: 

   mssgE


 ,, 21,211,1      


 ,,,, 211,21,1 gEmssg  (B3) 

   mgE k


,, 21   mgk


 ,0,0  (B4) 
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   mssgE k


 ,, 21,211,1   mssgk


 ,, 1,21,1  (B6) 

Substituting (B5) into (B6) and differentiating with respect to lm  yields 
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,  l=3,..9 (B7) 
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Therefore each )(,* MAk  is an affine function. Accordingly (B5) is represented as follows: 
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Proof of Proposition 3. 

We use the whole Common property B above. Instead, let us omit all terms related the second 

security. Accordingly, ignore the )(2 tS  and restrict the M as ),( 32 MMM   with 

0,22 MM   and 0,33 MM  . Then integrating (B8) with respect to 
2M  yields 
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Similarly, we can get alternative form of (B9) by integrating (B8) with respect to 3M . By 

combining (B9) and the alternative form, we obtain the following form  
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 (B10) 

for some constants 
*a  and a function (*)sg  such that 0)0( sg . Substituting (B10) and 
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p
p

1Pr,0
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Because we can set p arbitrary, coefficients of p and p2 are zero. Therefore,  

 02

37326

2

25   aaa . (B12) 

It implies that 0765  aaa  because   is arbitrary function with   1eE . Accordingly 

we have the following relation: 
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 (B13) 

In addition, coefficients of 
2m and 3m  are zero because we can set them arbitrary. 
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1
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We have three cases that satisfy both (B14) and (B15). 

Condition B.1 

i) 01098  aaa ,  

ii) 
3f  such that 0)()(),,( 31

3

1

3

1   sfsfs  and 0108  aa  

iii) ),,( 32 ffa  s.t. 0))()(())()((),,( 31

3

1

3

21

2

1

2

1   sfsfasfsfs  

with aaa 810   and 8

2

9 aaa  . 

First, to check about the condition B1.ii), substituting 









5.0Pr),1log(

5.0Pr),1log(

k

k
  into 

  0)()(
2

31

3

1

3

2
  sfsf

k
 and taking the limit for 0k  yields: 

 0)(')(" 1

3

1

3  sfsf  (B16) 

Then 
1

2111

3 )(
s

ebsbsf   is a solution of (B16) for some 
1b  and 

2b . However, then 
3f  cannot be 

a generalized (3,0)-comoment function. It implies that the condition B1.ii) is impossible. Now let us 

check the condition B1.iii). 



32 

 

Let )()()( 32 xafxfxf a   and 









5.0Pr),1log(

5.0Pr),1log(

k

k
 . Then like the method above, we 

can show that 

 02)(')(" 11  sfsf aa
 (B17) 

Since 
2f  and 

3f  are a generalized (2,0)-comoment function and a generalized (3,0)-

comoment function respectively, we have the following solution 

 )()1(2)( 32 safsesf s   (B18) 

for some generalized (3,0)-comoment function 
3f . Therefore (B13) is arranged as follows: 
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Again, by letting 
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  and taking limit, 

sg  is represented as follows: 
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Then, (B18) implies that 
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or 
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 (B23) 

where 311 aad  , 
422 aad  , 343 aaad  , 84 ad  , 835 4aad  , 96 ad  , and 

107 ad  .10 Then substituting it into (B3) yields 

                                                           
10 Note that form (B23) include the condition B.1.i). 
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s
 (B24) 

Since 
1s  is arbitrary, we have the following cases 

Condition B.2 

i) 0543  ddd  

ii) 053  dd  & 0]2[ 32   aE  

iii) 04 d  &  0]2[ 32    heE  with 53 / ddah   

 

When the Condition B.2.ii) holds, )1(2)()( 32  sesafsf s
. And because iii) and ii) are 

exclusive, Condition B.2.iii) is equivalent to 043  dd  with 

 0]2[ 32    aeE .  (B25) 

(B25) is equivalent to 

 )1(2)()( 32  ss esesafsf  (B26) 

Arranging all above yields the equation and the condition of Proposition 3. Without loss of 

generality, we can let )3,2,1,0(),,,( Tuts  in Equation (3) and 
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j

jrS  (B27) 

for 3,2,1,0  and rj such that   1)exp(1  jj rE . Then g above satisfies Equation (4). 

  ■ 

 

Proof of Corollary 4. 

If a function is a realized (4,0)-comoment element, it should be decomposed as 

 )(),,()1(),,( 10,30,210,30,21
1 sgmmsemmsg rs

   

such that )()( 4

11 sOsg r   because of the restriction,   11 
s

eE . Now let us investigate the 

each condition. At the first condition, if 3h  or 
4h  are not zero, they cannot be eliminated. 

Therefore, .043  hh  However, 121 )1( 1 sheh
s

  is at most )( 2

1sO  as 01 s . 

At the second condition, if 5h  is zero, it is a case of the first condition. Therefore, it suffices 
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to show the case of nonzero 5h . However, if 5h  is not zero, 
2

0,2m  is not eliminated with 

zero expectation. 

Similarly, at the third condition, investigating nonzero 6h  is enough. However, if 6h  is not 

zero, To eliminate 0,2m  and 0,3m , 63 hh   and 64 ahh  . And then, the remaining term is 

at most )( 3

1sO  as 01 s . 

  ■ 

 

Proof of Proposition 5. 

Proof of Proposition 5 is similar to Proof of Proposition 3. For a convenience, let us replace 

some notations. At the Common property B, let us restrict the ),,( 21 cVVVM   with 0,21 MV  , 

2,02 MV  , and 1,1MVc  . In addition, f  and cf  replace 
2f  and 

1,1f  respectively. Then 

integrating (B8) with respect to 
1V  yields 
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 (B28) 

Similarly, we can get alternative form of (B28) by integrating (B8) with respect to 
2V  or cV . 

By combining (B28) and the alternatives, we obtain the following form 
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with 0)0,0( sg . Let us substitute (B29) into equation (B3). Then 
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It is simplified as: 
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Let  
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Then, for }2,1{i ,   1
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c  )],([ 21 . Therefore, 
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pp   into ),( 21   of the previous equation yields 
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Because (B32) holds for arbitrary p , the coefficient of 
2p  should be zero. 
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Since 
11s  and 

21s  are arbitrary, the following holds: 
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Because c  is arbitrary, given 
1  and 

2 ,  
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According to the similar logic with the 
1  and 

2 , the followings hold. 

 01176  bbb   and 0201615  bbb  . (B36) 

Because coefficient of p  is zero, at Equation (B32), 
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Because 
cv  is arbitrary, coefficient of 

cv  is zero. 
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Now consider a random variable 3  with 23 ~
d
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By subtracting these two equations, one can see that 024 b  or 
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When we substitute 
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into Equation (B40) and multiply ))1ln()1/(ln(2 kk   to the both hand side of the equation, 
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and take the limit with 0k , we get 

 1),( 211112 ssfc  (B41) 

Hence  

 )()(),( 21211121112111 sFsFssssfc   (B42) 

for some function 
1F  and 
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21112111 ),( ssssfc  . Therefore, (B40) implies 21112111 ),( ssssfc  . When one substitute function cf  

into previous of previous equation (B42), we get the following equation: 
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EsEsb

sfsfEbsfsfEb
 (B43) 

When 011 s , (B43) is changed to 0][2))()]([( 1212422122122   EsbsfsfEb . Because 

1  can be chosen independently on 
21s  and 

2 ,  

 024 b . (B44) 

Instead of Equation (B38), let us consider the coefficients of 
1v  and 

2v . Then adopting same logic 

from (B37) to (B44) yields 

 02221  bb . (B45) 

Because the coefficient of 
1v  is at Equation (B37), the equations (B44) and (B45) implies: 

 0))()]([(2))()]([( 1111112522122123   sfsfEbsfsfEb  (B46) 

Substituting 011 s  or 021 s  into the (B46) yields: 

 0))()]([())()]([( 1111112522122123   sfsfEbsfsfEb  (B47) 

Similarly, we can get an alternative form of (B47) by using the coefficient of 
2v . The combination 
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between these two yields the following 

 0)])([)()]([(   fEsfsfE  or  0262523  bbb . (B48) 

Here, 0)()]([ 111111   sfsfE  is equivalent to 

 )1(2)( xexf x   (B49) 

by (Neuberger 2012). In sum, (B37) with (B44), (B45), and (B48) yields 
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212111221111
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2141131225143
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sss

s

c

s

c

gEssgssgE

sfbsfbsfsfb

ebbbebbb







 (B50) 

Substituting 











2/1Pr)1log(

2/1Pr)1log(
1

k

k
  and 02   into the (B50) and taking limit yields: 

 
   

)0,0()0,0(),(),(

)1(8)1(412120

11121111211111

11252123134
11212111

ssss

ssss

ggssgssg

sebsebebeb




 (B51) 

Similarly, when use 











2/1Pr)1log(

2/1Pr)1log(
2

k

k
  and 01  , we get the following relation 

 
   

)0,0()0,0(),(),(

)1(8)1(412120

22221112211122

21261123145
21112111

ssss

ssss

ggssgssg

sebsebebeb




 (B52) 

Now let us consider 
1  and 

2  that are dependent each other. If we substitute (B53) or (B54) into 

Equation (B50) and subtract each other, then then taking limits yields the (B55). 

 











2/1Pr))1log(),1(log(

2/1Pr))1log(),1(log(
),( 21

kk

kk
  (B53) 

 











2/1Pr))1log(),1(log(

2/1Pr))1log(),1(log(
),( 21
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  (B54) 
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     )0,0(),(110 12211112123
2111 ssss

gssgebeb   (B55) 

Then the solutions of the (B51), (B52), and (B55) are given as  

 xybyhxhxyebyxebyxg yxs

2721123 )()()()(),(   (B56) 

 
xbyhyhexxexeb

yexbxebxexebyxg

xxx

yyxxs

2843

2
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23134
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)1(4)1(2)(2),(




 (B57) 
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xxyys
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23514

)()()422(4
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 (B58) 

for some function (.)ih  and constants 2827,bb , and 29b . Therefore ),( yxg s  is a linear combination 

of yyeyexxexexyxeye yyxxyx ,,,,,,,,,, 22
 and 1. Consistency about coefficients of ye x

 and 

xe y  requires 
2335 2

2

1
bbb   and 

231213 2
2

1
bbb  . Because )0,0(sg  is zero, g  and sg  

are given by 
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 (B59) 
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 (B60) 

(B59) and (B60) are arranged as 
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where 
2512415 4

2

1
bbbbd  , 

2614326 4
2

1
bbbbd  , 12307 bbbd  , 258 bd  , 

269 bd  , 2310 bd  , 
311

2

1
bd  , 

1212
2

1
bd  , 25413 4bbd  , 261414 4bbd  .11 

Substituting it into equation (20) yields the following: 
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22111113

11221222111110

2222129111118

][22])2[()1(

)][22(])2[()1(

])[2)(2(])[2)(2(

])[2(22])[2(220

2221

1111



















 

eEdeEde

eEdeEde

EsvEsvd
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s  (B62) 

Since coefficients of 
1v  and 

2v  are zero, ]2[)]([   EfE  or 01098  ddd . In addition, 

because 
2111, ss  are arbitrary, 

 
 11122214

22111113

][22])2[(0

)][22(])2[(0

22

11












eEdeEd

eEdeEd

c

c  (B63) 

 (1) If 11d  is not zero, for some constants 
1k  and 

2k , the following holds 

    11)2(
22

1
),( 2111

2111

11

13

2221 
  ekeke

d

d
efc  

Then   01)2(
2

11

111

11

13 
  eke

d

d
 and   222 1

2

1
2  

 ek  because 1
),(


xy

yxfc
 

as 0, yx . Accordingly, 12 k  because 1
)(

2


x

xf
 as 0, yx . And it implies 

0131  dk . Therefore, )1(),( 1

221 
 efc ,  12)(   ef . Then 01412  dd . 

                                                           

11  The ten coefficients, 2523141250 ,,,,,, bbbbbb  , and 26b  are replaced with 145 ,, dd  . More 

precisely, ),,,( 131285 dddd  replace ),,,( 251241 bbbb . ),,,( 141196 dddd  replace ),,,( 261432 bbbb . 

10d  replaces 23b . And 7d  replaces 0b  given 3b  and 
12b .  
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(2) Similarly, if 12d  is not zero, )1(),( 2

121 
 efc ,  12)(   ef  and  

0141311  ddd  

 

(3) or 014131211  dddd ,  12)(   ef  with arbitrary function cf . 

 

(4) 012111098  ddddd , )1(2)(   eef  with arbitrary function cf . 

 

(5) 0141312111098  ddddddd  with arbitrary functions f  and cf . 

  ■ 
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Table 1. Higher order moment swaps 

Type of swap Receiving at T Paying at },,1{ Nj   Cost at 0 

Third comoment )()( 0,2,2

2

0,1,1 SSSS TT     jjjjjj MSMSSS ,1,1,1,0,2,2,2

2

,1 2    0 

Non-zero fourth 

moment 

4

0,1,1 )( SS T    
2

,0,2,0,3,1,0,2

2

,1

4

,1 )(34)(6)( jjjjjj MMSMSS    
2

0,0,23M  

Fourth moment 
0,0,2

2

0,1,1

4

0,1,1 )(3)( MSSSS TT   
2

,0,2,0,3,1,0,2

2

,1

4

,1 )(34)(6)( jjjjjj MMSMSS   0 

Non-zero 

asymmetric 

fourth comoment 

)()( 0,2,2

3

0,1,1 SSSS TT   

jjjjjjj

jjjjjj

MMSSMSM

SMMSSS

,1,1,0,2,2,1,0,2,1,1,2

2

,1,1,1,0,3,2,2

3

,1

333

)(3)(




 0,1,10,0,23 MM

 

Asymmetric fourth 

comoment with a 

0,1,1

2

0,1,1

0,0,20,2,20,1,1

0,2,2

3

0,1,1

))(1(3

))((3

)()(

MSSa

MSSSSa

SSSS

T

TT

TT







 

with a constant a 

jjjjjjj

jjjjjj

MMSSMSM

SMMSSS

,1,1,0,2,2,1,0,2,1,1,2

2

,1,1,1,0,3,2,2

3

,1

333

)(3)(




 

0 

Non-zero symmetric 

fourth comoment 

2

0,2,2

2

0,1,1 )()( SSSS TT   

jjjjjjj

jjjjj

SMSMSSM

MMSMS

,2,1,2,1,2,1,2,1,1,1

2

,1,1,2,0

2

,2,0,2

2

,1

224

)(2)))(()((




 

2

0,1,1

0,2,00,0,2

2M

MM


 

Symmetric fourth 

comoment with a 

0,0,2

2

0,2,2

0,2,0

2

0,1,1

0,1,10,2,20,1,1

2

0,2,2

2

0,1,1

))(1(

)(

))((2

)()(

MSSa

MSSa

MSSSS

SSSS

T

T

TT

TT









 

with a constant a 

jjjjjjj

jjjjj

SMSMSSM

MMSMS

,2,1,2,1,2,1,2,1,1,1

2

,1,1,2,0

2

,2,0,2

2

,1

224

)(2)))(()((




 

0 

This table describes various (co)moment swaps. Each row represents structure of a swap. The second, the third, and the fourth column represent amount of 

receiving leg, paying leg, and initial cost respectively. Paying leg consists of the terms of realized cumulant and the receiving leg is a product of returns possibly 

with additional terms. Since each swap is constructed to be fair, some swaps require additional cost at time zero and they have a prefix, non-zero, at the name. 

The non-zero swaps are modified to be zero cost swaps by changing the receiving legs. Then expectation of receiving leg of a non-zero swap is (co)moment 

and expectation of receiving leg of a modified swap is (joint) cumulant. There are two kinds of comoment in the case of the fourth comoment. When the 
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receiving leg is related to the product of square of returns, then it has affix, symmetric, at the name; otherwise, it has affix of asymmetric. In the case of the 

fourth comoments, there are various forms for zero cost swaps. We denote the variation with a constant a.
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Table 2. Statistics of cumulants of the S&P 500 returns 

This table represents descriptive statistics of cumulants, skewness, and kurtosis of S&P 500 returns 

from January 1996 to August 2014. Panel A shows the statistics of 30-calendar-day returns up to the 

last trading day of each option. The second column represents sample moments. The third and fourth 

column represent averages for the implied and realized values respectively. Implied cumulants are 

calculated through Equation (29). Realized cumulants are calculated through the expressions (7), (9), 

and (20). Numbers in parentheses are standard deviations for each term. The other panels are similar to 

the Panel A except the time horizon and frequency of sample. 

A. 30 days 

  Sample Implied Realized 

2nd cumulant 0.24 0.40 0.32 

(×100)  (0.37) (0.50) 

3rd cumulant -0.11 -0.34 -0.22 

(×1000)  (0.46) (0.57) 

Skewness -0.90 -1.37 -1.11 

  (0.50) (0.72) 

4th cumulant 0.18 0.80 0.25 

(×10000)  (1.27) (0.97) 

Kurtosis 3.04 5.94 4.33 

    (4.02) (5.87) 

 

B. 90 days 

  Sample Implied Realized 

2nd cumulant 0.75 1.18 0.89 

(×100)  (0.80) (0.97) 

3rd cumulant -0.11 -1.42 -0.92 

(×1000)  (1.13) (1.49) 

Skewness -0.16 -1.17 -1.11 

  (0.38) (0.49) 

4th cumulant 0.62 3.76 1.28 

(×10000)  (3.30) (2.33) 

Kurtosis 1.11 3.35 2.93 

    (1.95) (2.51) 

 

C. 180 days 

  Sample Implied Realized 

2nd cumulant 1.65 2.32 1.93 

(×100)  (1.36) (2.03) 

3rd cumulant 0.05 -3.01 -2.12 

(×1000)  (2.09) (2.44) 

Skewness 0.02 -0.91 -1.03 

  (0.33) (0.53) 

4th cumulant 3.04 6.75 3.84 
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(×10000)  (5.44) (13.05) 

Kurtosis 1.11 1.67 2.10 

    (1.08) (2.03) 

 

D. 360 days 

  Sample Implied Realized 

2nd cumulant 3.97 4.63 7.81 

(×100)  (2.27) (28.59) 

3rd cumulant 1.97 -4.23 6.40 

(×1000)  (4.89) (81.53) 

Skewness 0.25 -0.50 -0.81 

  (0.40) (0.58) 

4th cumulant -12.91 8.63 468.85 

(×10000)  (16.02) (3652.54) 

Kurtosis -0.82 0.62 1.27 

    (0.61) (1.63) 
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Table 3. Adjusted skewness and kurtosis 

Adjusted skewness represents monthly skewness which is calculated by skewness of n-month return; 

n  times sample skewness of n-month return of the Table 2. In addition, adjusted kurtosis represents 

n times non-excess kurtosis of n-month return minus 3. When returns are i.i.d., each moment is 

proportional to the length of period, n. Accordingly, skewness is proportional to n/1  and non-excess 

kurtosis is proportional to 1/n if the returns are i.i.d.. Likewise, adjust skewness or adjusted kurtosis 

should be irrelevant to the n if the returns are i.i.d.. 

Months (n) 1 3 6 12 

Adjusted skewness -0.90 -0.28 0.06 0.86 

Adjusted kurtosis 3.04 9.34 21.68 23.19 
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Table 4. Time series regression of cumulants of S&P 500 returns 

Panel A represents the time series regression about cumulants of monthly return of S&P 500 from 

January 1996 to August 2014. Each row represents the result of the regression with coefficients and t-

values in parentheses. The first column represents the measure that we address. Within the measure, 

dependent variables are realized cumulants and the independent variables are implied or lagged realized 

cumulants. The other panels are similar to the Panel A except the time horizon. 

A. 30 days 

  Intercept Implied Realized(-1) Adj. R2 

2nd cum. 0.00 0.95   0.51 

 (-1.23) (6.31)   

 0.00  0.71 0.50 

 (2.44)  (4.71)  

 0.00 0.54 0.37 0.55 

  (-0.51) (3.06) (1.47)   

3rd cum. 0.00 0.82   0.43 

 (0.98) (4.00)   

 0.00  0.61 0.37 

 (-2.02)  (2.46)  

 0.00 0.57 0.25 0.46 

  (0.73) (3.01) (0.92)   

Skew -0.20 0.67   0.22 

 (-2.30) (9.42)   

 -0.68  0.39 0.15 

 (-7.59)  (4.68)  

 -0.20 0.52 0.19 0.24 

 (-2.21) (5.81) (2.26)   

4th cum. 0.00 0.23   0.08 

 (0.64) (1.13)   

 0.00  -0.13 0.01 

 (3.99)  (-0.46)  

 0.00 0.28 -0.24 0.13 

  (0.83) (1.62) (-0.74)   

Kurt 1.48 0.48   0.10 

 (3.25) (6.27)   

 3.18  0.27 0.07 

 (7.01)  (3.40)  

 1.38 0.38 0.16 0.12 

  (3.01) (4.94) (2.31)   

 

B. 90 days 

  Intercept Implied Realized(-1) Adj. R2 

2nd cum. 0.00 0.66   0.29 

 (1.66) (7.91)   

 0.00  0.48 0.22 
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 (4.66)  (3.85)  

 0.00 0.58 0.08 0.28 

  (1.81) (4.56) (0.64)   

3rd cum. 0.00 0.56   0.17 

 (-1.06) (4.56)   

 0.00  0.35 0.11 

 (-3.71)  (5.03)  

 0.00 0.48 0.08 0.16 

  (-1.43) (2.39) (0.79)   

Skew -0.17 0.80   0.39 

 (-1.59) (9.27)   

 -0.48  0.57 0.31 

 (-4.69)  (6.49)  

 -0.17 0.59 0.22 0.40 

 (-1.55) (3.44) (1.41)   

4th cum. 0.00 0.20   0.06 

 (1.42) (1.81)   

 0.00  0.32 0.09 

 (2.93)  (2.15)  

 0.00 0.11 0.25 0.10 

  (1.56) (0.89) (1.40)   

Kurt 0.39 0.75   0.34 

 (1.01) (6.81)   

 1.28  0.55 0.30 

 (3.78)  (4.61)  

 0.26 0.51 0.32 0.40 

  (0.76) (3.53) (2.74)   

 

C. 180 days 

  Intercept Implied Realized(-1) Adj. R2 

2nd cum. 0.01 0.62   0.16 

 (2.55) (6.65)   

 0.01  0.27 0.06 

 (5.18)  (2.52)  

 0.01 0.60 0.03 0.15 

  (2.60) (5.26) (0.40)   

3rd cum. 0.00 0.53   0.19 

 (-2.02) (6.76)   

 0.00  0.29 0.07 

 (-4.90)  (3.73)  

 0.00 0.63 -0.11 0.19 

  (-1.77) (4.49) (-0.95)   

Skew 0.14 1.29   0.63 

 (1.53) (13.06)   

 -0.31  0.71 0.48 
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 (-3.45)  (9.44)  

 0.12 1.12 0.13 0.63 

 (1.26) (5.35) (0.95)   

4th cum. 0.00 0.07   -0.01 

 (0.89) (0.18)   

 0.00  0.04 -0.01 

 (2.14)  (0.47)  

 0.00 0.05 0.04 -0.03 

  (0.87) (0.14) (0.48)   

Kurt -0.30 1.43   0.57 

 (-1.27) (8.10)   

 0.87  0.60 0.32 

 (3.18)  (4.13)  

 -0.30 1.25 0.15 0.57 

  (-1.37) (5.48) (1.36)   

 

D. 360 days 

  Intercept Implied Realized(-1) Adj. R2 

2nd cum. 0.02 1.18   -0.01 

 (1.00) (1.24)   

 0.08  -0.01 -0.02 

 (2.19)  (-0.72)  

 0.02 1.27 -0.03 -0.02 

  (0.90) (1.21) (-0.99)   

3rd cum. 0.01 0.47   -0.01 

 (0.83) (1.29)   

 0.01  0.00 -0.02 

 (0.67)  (-0.31)  

 0.01 0.47 -0.01 -0.03 

  (0.83) (1.28) (-0.45)   

Skew -0.31 1.03   0.49 

 (-3.66) (9.11)   

 -0.39  0.58 0.32 

 (-3.79)  (6.71)  

 -0.26 0.85 0.18 0.50 

 (-2.87) (5.16) (1.47)   

4th cum. 0.08 -34.24   0.01 

 (1.04) (-0.91)   

 0.05  -0.02 -0.02 

 (1.08)  (-1.12)  

 0.08 -36.47 -0.05 -0.01 

  (1.03) (-0.90) (-1.00)   

Kurt 0.19 1.73   0.41 

 (1.07) (6.68)   

 0.87  0.37 0.10 
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 (3.81)  (3.08)  

 0.20 1.81 -0.05 0.40 

  (1.11) (5.90) (-0.50)   
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Table 5. Average of regression about comoments 

Panel A represents average of time series regression results about comoments of monthly returns 

between S&P 500 and each stock contained in Dow Jones Industrial Average from January 1996 to 

August 2014. Each row represents the result of the regression with coefficients and t-values in 

parentheses. The first column represents the measure that we address. Within the measure, dependent 

variables are realized comoments and the independent variables are implied, lagged realized, and 

historical comoments; the implied and the realized moments are calculated as Section 3 describes and 

the historical comoments are calculated from the previous 24 monthly returns. Panel B is similar to the 

Panel A except that Panel B is about average of cross sectional regressions. 

 

A. Average of time series regressions.  

  Intercept Implied Realized(-1) Historical Adj. R2 

covar 0.000 0.691     0.403 

 (-1.304) (11.510)   (13.477) 

 0.001  0.495  0.322 

 (15.013)  (11.042)  (11.394) 

 0.002   0.568 0.037 

 (5.899)   (4.992) (3.641) 

 0.000 0.521 0.134 0.010 0.429 

  (2.246) (7.532) (3.247) (0.057) (13.846) 

3rd comom 0.000 0.907     0.440 

 (1.065) (13.638)   (16.983) 

 0.000  0.401  0.234 

 (-18.145)  (9.255)  (10.566) 

 0.000   0.676 0.053 

 (-13.645)   (6.809) (6.086) 

 0.000 0.872 0.039 -0.184 0.466 

  (1.212) (13.435) (1.155) (-2.593) (18.530) 

beta 0.133 0.716     0.114 

 (1.152) (7.605)   (4.903) 

 0.686  0.257  0.084 

 (18.651)  (8.738)  (5.228) 

 0.698   0.223 0.066 

 (9.104)   (3.244) (4.418) 

 -0.022 0.586 0.111 0.150 0.167 

  (-0.094) (4.134) (3.780) (1.142) (5.527) 

gamma 0.310 0.648     0.045 

 (2.092) (5.382)   (2.966) 

 0.952  0.042  0.005 

 (26.977)  (1.835)  (0.520) 

 0.992   -0.009 -0.004 

 (26.816)   (-0.610) (-0.688) 

 0.339 0.644 -0.010 -0.027 0.035 

  (2.225) (4.913) (-0.521) (-1.167) (2.141) 
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B. Average of cross sectional regressions. 

  Intercept Implied Realized(-1) Historical Adj. R2 

covar 0.000 0.668     0.282 

 (-0.283) (12.675)   (15.831) 

 0.001  0.600  0.269 

 (5.618)  (11.946)  (15.827) 

 0.001   0.834 0.265 

 (7.379)   (8.181) (16.990) 

 0.000 0.282 0.269 0.298 0.386 

  (0.845) (6.442) (9.210) (5.823) (21.012) 

3rd comom 0.000 0.617     0.358 

 (-3.601) (9.245)   (18.601) 

 0.000  0.784  0.227 

 (-6.649)  (3.331)  (12.863) 

 0.000   0.107 0.075 

 (-6.574)   (1.522) (8.438) 

 0.000 0.510 0.308 0.006 0.409 

  (-3.713) (10.603) (2.942) (0.203) (21.448) 

beta 0.036 0.861     0.282 

 (0.748) (18.166)   (15.831) 

 0.455  0.508  0.269 

 (20.007)  (21.210)  (15.827) 

 0.485   0.459 0.265 

 (23.011)   (22.536) (16.990) 

 0.109 0.374 0.240 0.212 0.386 

  (2.539) (8.198) (12.797) (12.072) (21.012) 

gamma 0.254 0.687     0.358 

 (4.256) (12.425)   (18.601) 

 0.626  0.345  0.227 

 (18.817)  (8.397)  (12.863) 

 0.884   0.085 0.075 

 (16.109)   (1.906) (8.438) 

 0.221 0.570 0.111 0.042 0.409 

  (4.809) (7.507) (2.606) (1.062) (21.448) 
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Table 6. Return and realized moments of (co)moment portfolios 

Panel A represents performance of portfolios that are constructed based on the rank of the implied volatility. We 

classify the firms in the DJIA index into the three groups, based on the model free implied variance at each month-

end, with breakpoints 30% and 70%. Using the three groups, we make three equally weighted portfolios and zero 

cost portfolio which is denoted by 3-1. The numbers in the second column is the average of returns over the 

subsequent month. Similarly, the other columns present realized moments of return over the subsequent month. 

The last row represents t-value of the statistics for the 3-1 portfolio. Panel B and C are similarly constructed except 

that the portfolios are sorted based on the model free implied skewness or kurtosis at each month-end. The other 

Panels are similar except that the portfolios are sorted based on the realized moment of each month-end.   

A. var_imp return volatility beta gamma skewness kurtosis 

1 (lowest) 0.0060 0.0601 0.6696 0.7571 -0.2129 0.4505 

2 0.0081 0.0764 0.9360 0.9829 -0.1533 0.3106 

3 (highest) 0.0048 0.1045 1.2115 1.1614 -0.0187 0.3439 

3-1 -0.0012 0.0444 0.5419 0.4042 0.1942 -0.1065 

t(3-1) -0.2795 15.7341 18.6191 9.9106 12.5295 -2.1609 

B. skew_imp             

1 0.0031 0.0696 0.8378 0.9174 -0.2355 0.5461 

2 0.0078 0.0772 0.9281 0.9559 -0.1415 0.3151 

3 0.0082 0.0938 1.0535 1.0373 -0.0122 0.2428 

3-1 0.0051 0.0242 0.2156 0.1199 0.2233 -0.3033 

t(3-1) 1.4832 12.0778 9.1469 3.4865 15.5593 -5.6128 

C. kurt_imp       

1 0.0056 0.0824 0.9939 1.0043 -0.1188 0.2503 

2 0.0066 0.0776 0.9303 1.0021 -0.1376 0.3469 

3 0.0071 0.0806 0.8946 0.8885 -0.1337 0.4957 

3-1 0.0015 -0.0019 -0.0992 -0.1157 -0.0149 0.2454 

t(3-1) 0.5322 -1.1838 -5.0005 -2.8297 -0.9675 4.7449 

D. var_real(-1)       

1 0.0071 0.0631 0.7206 0.7985 -0.1972 0.4541 

2 0.0075 0.0770 0.9240 0.9660 -0.1561 0.3687 

3 0.0043 0.1005 1.1762 1.1415 -0.0311 0.2638 

3-1 -0.0028 0.0374 0.4556 0.3430 0.1661 -0.1903 

t(3-1) -0.6844 13.3402 15.9114 5.6637 10.7673 -4.3224 

E. β_real(-1)       

1 0.0072 0.0679 0.6813 0.7999 -0.1563 0.4433 

2 0.0060 0.0756 0.9085 0.9738 -0.1476 0.3998 

3 0.0063 0.0976 1.2352 1.1297 -0.0833 0.2319 

3-1 -0.0008 0.0297 0.5539 0.3298 0.0730 -0.2114 

t(3-1) -0.2000 10.2679 19.7464 4.8118 4.6119 -5.5192 

F. γ_real(-1)       

1 0.0068 0.0709 0.7527 0.8522 -0.1470 0.4466 

2 0.0076 0.0758 0.9117 0.9583 -0.1524 0.3477 

3 0.0046 0.0943 1.1598 1.0976 -0.0864 0.2992 

3-1 -0.0022 0.0233 0.4072 0.2454 0.0605 -0.1475 

t(3-1) -0.6941 9.3553 15.1543 6.1452 3.9138 -3.4842 

G. skew_real(-1)       
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1 0.0081 0.0747 0.8937 0.9548 -0.2189 0.4011 

2 0.0071 0.0783 0.9419 0.9596 -0.1430 0.3038 

3 0.0038 0.0872 0.9796 0.9939 -0.0264 0.4030 

3-1 -0.0043 0.0125 0.0859 0.0391 0.1924 0.0019 

t(3-1) -1.4363 5.0359 3.3964 1.3867 12.1968 0.0411 

H. kurt_real(-1)       

1 0.0048 0.0811 0.9763 0.9747 -0.1265 0.2200 

2 0.0061 0.0799 0.9569 0.9720 -0.1219 0.3555 

3 0.0086 0.0787 0.8775 0.9580 -0.1467 0.5152 

3-1 0.0038 -0.0024 -0.0988 -0.0167 -0.0202 0.2953 

t(3-1) 1.5108 -1.9058 -5.2212 -0.4412 -1.3980 6.8189 
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Table 7. Fama and French 3 factor risk adjusted return 

This table constructs the portfolios as the Table 6 describes. And then this table shows coefficients and t-values 

about time series regression of excess return of each portfolio on the Fama and French 3 factors; mkt, smb, and 

hml are market excess return, SMB factor, and HML factor respectively.  

 

 A. var_imp 

 Intercept MKT SMB HML Adj. R2 

1 0.002 0.632 -0.291 0.125 0.603 

 (1.332) (14.561) (-3.266) (2.047)  

2 0.002 0.974 -0.262 0.195 0.802 

 (1.164) (22.550) (-4.078) (3.317)  

3 -0.006 1.457 0.077 0.536 0.782 

 (-2.417) (22.227) (0.886) (5.559)  

3-1 -0.008 0.825 0.368 0.411 0.457 

 (-2.626) (9.949) (2.710) (3.367)   

B. skew_imp      

1 -0.002 0.832 -0.259 0.131 0.695 

 (-1.283) (19.125) (-4.225) (2.028)  

2 0.002 0.957 -0.222 0.190 0.785 

 (1.028) (23.678) (-3.212) (3.141)  

3 -0.001 1.279 -0.005 0.531 0.733 

 (-0.561) (18.955) (-0.056) (5.018)  

3-1 0.001 0.448 0.254 0.400 0.213 

 (0.273) (5.234) (2.176) (2.968)   

C. kurt_imp      

1 -0.002 1.086 -0.209 0.277 0.779 

 (-1.025) (23.439) (-2.683) (3.880)  

2 0.000 0.934 -0.163 0.207 0.802 

 (0.300) (24.613) (-2.787) (4.051)  

3 0.000 1.057 -0.137 0.366 0.669 

 (-0.185) (16.557) (-1.657) (4.089)  

3-1 0.001 -0.029 0.072 0.090 -0.007 

 (0.471) (-0.370) (0.626) (0.818)   

D. var_real(-1)      

1 0.003 0.708 -0.298 0.156 0.636 

 (1.566) (14.523) (-3.319) (2.266)  

2 0.001 0.970 -0.291 0.173 0.840 

 (1.051) (31.984) (-7.558) (3.326)  

3 -0.006 1.387 0.114 0.541 0.741 

 (-2.294) (19.808) (1.169) (4.794)  

3-1 -0.009 0.678 0.411 0.385 0.358 

 (-2.663) (7.396) (3.083) (2.693)   

E. β_real(-1)      

1 0.003 0.680 -0.224 0.126 0.572 

 (1.637) (13.065) (-2.511) (1.863)  
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2 -0.001 0.965 -0.195 0.297 0.769 

 (-0.418) (23.806) (-2.675) (4.698)  

3 -0.004 1.423 -0.081 0.397 0.762 

 (-1.406) (18.277) (-0.920) (3.476)  

3-1 -0.006 0.744 0.143 0.271 0.334 

 (-1.897) (6.974) (1.001) (1.809)   

F. γ_real(-1)      

1 0.001 0.853 -0.224 0.144 0.679 

 (0.778) (15.463) (-2.805) (2.392)  

2 0.001 0.990 -0.216 0.275 0.799 

 (0.593) (25.051) (-3.492) (4.082)  

3 -0.004 1.214 -0.057 0.416 0.723 

 (-1.735) (19.612) (-0.636) (3.870)  

3-1 -0.006 0.360 0.167 0.271 0.140 

 (-1.792) (4.106) (1.297) (1.988)   

G. skew_real(-1)      

1 0.003 0.836 -0.255 0.117 0.673 

 (1.664) (17.148) (-3.579) (1.607)  

2 0.000 0.995 -0.188 0.309 0.804 

 (0.136) (27.431) (-3.413) (5.855)  

3 -0.005 1.227 -0.064 0.396 0.799 

 (-2.608) (19.122) (-0.797) (4.414)  

3-1 -0.008 0.390 0.190 0.279 0.199 

 (-3.013) (4.351) (1.838) (2.385)   

H. kurt_real(-1)      

1 -0.002 1.017 -0.054 0.346 0.785 

 (-1.555) (25.606) (-0.732) (6.021)  

2 -0.001 1.044 -0.182 0.257 0.798 

 (-0.609) (26.825) (-3.018) (4.785)  

3 0.002 0.980 -0.269 0.233 0.704 

 (1.134) (17.813) (-3.916) (2.719)  

3-1 0.005 -0.037 -0.215 -0.113 0.026 

  (1.935) (-0.580) (-2.920) (-1.184)   
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Table A1. Elements of a spanning set of functions that satisfy Equation (A5) for each pair (k1,k2) 

k1+k2 (k1,k2) Elements of a spanning set of functions for each pair (k1,k2)  

1 (1,0) 1s  

2 (2,0) 
2

1s , 0,2M  

 (1,1) 
21ss , 1,1M  

3 (3,0) 
3

1s , 0,21Ms , 0,3M  

 (2,1) 2

2

1 ss , 1,11Ms , 0,22Ms , 1,2M  

4 (4,0) 
4

1s , 0,31Ms , 2

10,2

2

0,2
2

1
sMM   

 (3,1) 2

3

1 ss , 210,2

2

11,11,10,2 ssMsMMM  , 11,2 sM , 20,3 sM  

 (2,2) 
2

2

2

1 ss , 
2

20,2

2

12,02,00,2 sMsMMM  , 
211,1

2

1,1
2

1
ssMM  , 12,1 sM , 21,2 sM  

5 (5,0) 
5

1s , 3

10,2

2

10,31

2

0,20,30,2
2

3
sMsMsMMM   

 (4,1) 2

4

1 ss , 2

2

10,2

2

11,21,20,22

2

0,211,10,2210,3

3

11,11,10,3 666312444 ssMsMMMsMsMMssMsMMM   

 (3,2) 

2

2

3

1 ss , 2,00,3 MM 1,11,26 MM 0,22,13 MM 12,00,23 sMM
1

2

1,16 sM 21,10,26 sMM 2

20,3 sM 211,26 ssM 2

12,13 sM 3

12,0 sM

2

2

11,16 ssM 2

210,23 ssM  

6 (6,0) 
6

1s , 2

0,3
2

1
M 10,20,33 sMM 3

10,3 sM  

 (5,1) 2

5

1 ss , 1,20,3 MM
11,10,32 sMM 11,20,23 sMM 20,20,3 sMM

3

11,2 sM 2

2

10,3 ssM  

 (4,2) 
2

2

4

1 ss , 2,10,3 MM 12,00,3 sMM 10,22,13 sMM 21,10,32 sMM
3

12,1 sM 2

210,3 ssM , 2

2

11,220,21,211,11,2

2

1,2 2
2

1
ssMsMMsMMM   
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 (3,3) 

3

2

3

1 ss , 3,00,3 MM 13,00,23 sMM 22,00,33 sMM
3

13,0 sM 3

20,3 sM , 2,11,2 MM 12,11,12 sMM 11,22,0 sMM 21,11,22 sMM 20,22,1 sMM

2

2

12,1 ssM 2

211,2 ssM  

Each row of this table represents elements of spanning set of functions that satisfies Equation (A5) and 

)),(,,()),(,,( 21212122112211
21 SSMSSgllSlSlMSlSlg

kk
  for each pair (k1,k2) with 21 kk  . The cases of 12 kk   are omitted because they are 

represented by symmetry. 
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Table A2. Elements of basis of functions that satisfies Equation (A5) for each pair (k1,k2) 

k1+k2 (k1,k2) Elements of basis for each pair (k1,k2) 

1 (1,0) 1s  

2 (2,0) 
2

1s , 0,2M  

 (1,1) 21ss , 1,1M  

3 (3,0) 0,21

3

1 3 Mss  , 0,3M  

 (2,1) 0,221,112

2

1 2 MsMsss  , 1,2M  

4 (4,0) 
2

0,20,310,2

2

1

4

1 346 MMsMss   

 (3,1) 
2

11,11,10,20,322

3

1 (3 sMMMMsss  )11,2210,2 sMssM   

 (2,2) 
2

2

2

1 ss
2

20,2

2

12,02,00,2 sMsMMM  211,1

2

1,1 42 ssMM 
12,12 sM 21,22 sM  

5 (5,0) N/A 

 (4,1) N/A 

 (3,2) N/A 

6 (6,0) N/A 

 (5,1) N/A 

 (4,2) N/A 

 (3,3) N/A 

Each row of this table represents elements of basis of functions that satisfies the Aggregation 

Property and )),(,,()),(,,( 21212122112211
21 SSMSSgllSlSlMSlSlg

kk
  for each pair (k1,k2). 
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