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ABSTRACT 

We propose a Bayesian approach to identify the excessive comovement of two markets as a 

contagion. This goal is technically achieved by linking a latent factor model and single 

equation error correction model and testing the breaks in the short-term and long-term 

relationships and correlatedness in the linked model. We find that a short-term relationship 

representing a systematic volatility ratio between two markets plays a key role in contagion 

dynamics. When long-term relationship or correlatedness is broken, the cause is determined 

by calculating posterior probabilities. If the cause is a break in the short-term relationship, a 

contagion is formally declared.  
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I. Introduction 

In the existing literature, it is widely accepted that disentangling contagion from 

interdependence is critical for correctly identifying contagion during financial crises. 

Difficulties in identifying contagion lie in the fact that a contagion is not simply revealed by 

an increased correlation of performance indicators during a crisis period because increasing 

correlation coefficients are polluted by the rising volatility conditions, which are almost 

invariably associated with periods of financial stress. Most contagion tests define a contagion 

as “a correlation in excess of that expected via fundamentals” as noted by Bekaert, Harvey, 

and Ng (2005). Later, Bekaert, Ehtmann, and Fratzscher (2014) more directly related 

contagion as "the comovement in excess of that implied by the factor model". Bekaert et al. 

(2005) acknowledges the problem of identifying both the relevant fundamentals and how they 

are linked to asset correlation. To resolve these issues, factor decomposition models are 

introduced based on the fact that the volatility of the target market may change both for 

reasons associated with the common factor and its own market-specific factor. Thus, 

contagion tests have been refined continuously over the years as the sources of correlation 

biases are identified by removing confounding effects1. There are two critical issues (Dungey 

and Renault (2018)) when identifying correlation bias sources: (i) how asset correlation is 

related to common and market-specific factors during tranquil and crisis periods (Forbes and 

Rigobon (2002), Bekaert et al. (2005), Corsetti, Pericoli, and Sbracia (2005)) and (ii) how all 

time-varying components of return volatilities are related to structural breaks in crisis times 

(Rodriguez (2007), Bussetti and Harvey (2011), Bae, Karolyi, and Stulz (2003), Baur and 

Schulze (2005), Boyson, Stahel, and Stulz (2010), Aït-Sahalia, Cacho-Diaz, and Laeven 

(2015)). 

The originality of our approach is to apply the Bayesian method to detect the comovement 

in excess of that implied by the established model as a contagion. Simply speaking, when 

correlated relations between target and source markets are broken in terms of long-term 

relationship or correlatedness, its cause is determined by calculating posterior probabilities. If 

                                           
1 A situation in which the effect between the target and source market is distorted by the presence of other 
factors. This situation is typically resolved by introducing a proper factor model. 
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the cause is breaks in the underlying relationship between the two markets under integration, 

contagion is addressed formally. In this paper, this approach completely resolves two critical 

issues (i) and (ii) above (refers to Section II.D).  

To incorporate the Bayesian approach, this paper links latent factor model (LFM) and 

single equation error correction model (SEECM). LFM assumes market-specific volatilities 

together with common systematic volatility for describing market return under market 

integration. SEECM describes the dynamic process of market returns to equilibrium from a 

state of disequilibrium due to a shock using the assumption that two market return time series 

exhibit an equilibrium linear relationship that determines both short- and long-term behavior 

(Banerjee, Galbraith, and Dolado (1990), Banerjee, Dolado, Galbraith, and Hendry (1993), 

Davidson, Hedry, Srba, and Yeo (1978)). By linking the two models via autoregressive AR(1) 

error (Proposition 1 below), it is found that short-term relationship between two markets is 

entirely embedded into a long-term relationship and correlatedness between two markets. 

Based on this linked model, we establish the null market integration hypothesis (MIH) for 

tranquil periods (refer to Proposition 2) and find that the short-term relationship between two 

markets (or ‘common-factor loading ratio between two markets’) is the main backbone of the 

linked model under the MIH (refer to equation (10) below). These findings make an accurate 

and concise definition of contagion possible; a contagion is defined as an occurrence of 

breaks in the long-term relationship or correlatedness between two markets mainly caused by 

breaks in the short-term relationship between two markets. This definition makes sense 

because a contagion would be in effect when the short-term effect of a shock is not controlled 

properly at the beginning of the crisis period and continues to cause breaks in long-term 

relationship or correlatedness between two markets. 

We organize this paper into the following sections. Section II discusses market modeling 

under integration. Section III describes contagion dynamics and the Bayesian testing 

procedure. Section IV offers concluding remarks. 
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II. Market modeling under integration 

A. Latent factor model (LFM) and single equation error correction model (SEECM) 

Assume that there are two market stationary returns modeled as follows: 

              𝑋𝑡 = 𝜃𝑥𝑊𝑡 + 𝛿𝑥𝑢𝑥,𝑡  ,           𝑌𝑡 = 𝜃𝑦𝑊𝑡 + 𝛿𝑦𝑢𝑦,𝑡               (1) 

where 𝑊𝑡 represents a common factor with loadings 𝜃𝑥 and 𝜃𝑦. The common factor 𝑊𝑡 

represents market fundamentals, and its loadings 𝜃𝑥 and 𝜃𝑦 indicate the systematic risk 

levels of markets X and Y, respectively. The terms  𝑢𝑥,𝑡  and 𝑢𝑦,𝑡  in equation (1) are 

idiosyncratic factors unique to markets X and Y with the loadings 𝛿𝑥 and δy, respectively. 

Factors 𝑊𝑡, 𝑢𝑥,𝑡, and 𝑢𝑦,𝑡 are assumed to follow stochastic processes with zero mean and 

unit variance as follows: 

      𝑊𝑡 ~ (0,1),   𝑢𝑥,𝑡 ~ (0,1), 𝑢𝑦,𝑡 ~ (0,1).             

To complete the specification of the model, all factors are assumed to be independent: 

             E�𝑢𝑥,𝑡𝑢𝑦,𝑡� = 0,     E�𝑢𝑥,𝑡𝑊𝑡� = 0,     E�𝑢𝑦,𝑡𝑊𝑡� = 0.          

To highlight the interrelationships between the two market returns in equation (1), the 

variances and covariance are represented as follows: 

         Cov(𝑋𝑡,𝑌𝑡) =  𝜃𝑥𝜃𝑦 ,      Var(𝑋𝑡) =  𝜃𝑥2 + 𝛿𝑥2,        Var(𝑌𝑡) =  𝜃𝑦2 + 𝛿𝑦2.   

Note that the following equilibrium relationship between 𝑋𝑡 and 𝑌𝑡 exists by assuming 

LFM equation (1): 

𝑌𝑡 = 𝜃𝑦
𝜃𝑥
𝑋𝑡 −

𝛿𝑥
𝜃𝑥
𝑢𝑥,𝑡 + 𝛿𝑦𝑢𝑦,𝑡.                      (2) 

 

Assuming that 𝑋𝑡 and 𝑌𝑡 are two stationary market returns, the SEECM is specified as  

∆𝑌𝑡 = 𝛼 + 𝛽0∆𝑋𝑡 + 𝛽1𝑌𝑡−1 + 𝛽2𝑋𝑡−1 + 𝜀𝑡 = 𝛼 + 𝛽0∆𝑋𝑡 + 𝛽1(𝑌𝑡−1 − 𝛾𝑋𝑡−1) + 𝜀𝑡    (3)                         

where 𝛾 = −  𝛽2
𝛽1

, ∆𝑌𝑡 ≡ 𝑌𝑡 − 𝑌𝑡−1, ∆𝑋𝑡 ≡ 𝑋𝑡 − 𝑋𝑡−1 , and 𝜀𝑡 is the independent and 

identically distributed (iid) error. The part of the equation within the parentheses in equation 

(3) is the error correction mechanism, where (𝑌𝑡−1 − 𝛾𝑋𝑡−1) = 0 when X and Y are in 
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equilibrium. The coefficient 𝛽0  specifies the short-term effects of an increase in X on an 

increase in Y, while 𝛽1 describes the speed at which X and Y return to equilibrium from a 

state of disequilibrium. The coefficient 𝛾 specifies the long-term effects of X on Y. Note that 

when −1 < 𝛽1 < 0  ( 𝛽1 > 0 ), the system converges to equilibrium (diverges from 

equilibrium). Since 𝛽1 represents the speed of return to equilibrium (and is therefore the 

scaled inverse of market-specific volatility of market Y, refer to footnote 4 for its details) and 

𝛽2 = −𝛾𝛽1  is the long-term relationship adjusted by the corresponding volatility, 𝛽2 

measures the correlatedness between markets X and Y. Recall that the correlatedness often 

suffers from bias in testing contagion (Forbes and Rigobon (2002)2). Dynamic specifications 

by SEECM allow us to estimate and test for both short- and long-term effects that help us 

better understand contagion dynamics between two markets. When a shock hits a market, we 

expect an immediate short-term effect of the shock on the other market. If the shock effect 

continues, it tends to have a long-term effect and may cause deviation from the equilibrium 

(or breaks in long-term relationship or correlatedness) between two markets. Thus, SEECM 

equation (3) is suited to dynamically model how a shock occurring in one market influences 

the other market during crisis. Engle and Granger (1987) propose equation (3) as a two-step 

error correction model for two or more cointegrated time series, whereas the SEECM 

employed herein applies to two stationary time series (see De Boef and Keele (2008) for 

details). The concepts of error correction, short-term effects, and equilibrium are not unique 

to cointegrated data3. Note that when deviation from the long run equilibrium occurs, its 

recovery process, which involves dynamism between X and Y, is modeled by SEECM.          

A simple example demonstrates the interpretation of coefficients in equation (3). Let’s say 

we regress the first difference of given one market returns (∆𝑌𝑡) on one lag of the market 

returns (𝑌𝑡−1), one lag of the other market returns (𝑋𝑡−1), and the first difference of the other 

market returns (∆𝑋𝑡) as noted in equation (3). The coefficients are β0 = 0.3, β1 = −0.5, and 

β2 = 1.0, which implies the long-term effects of X on Y, γ = 2. If X market return were to 
                                           
2 Forbes and Rigobon (2002) note that cross-market correlations increase during a crisis period without breaks 
in the long-term relationship between markets. 
3 We assume that a long run equilibrium or relationship exists between stationary 𝑌𝑡 and stationary 𝑋𝑡 during 
a tranquil period. Assuming stationary (𝑋𝑡 ,𝑌𝑡) is technically sound in the sense that their relationship is 
invariant over time during a tranquil period.  



6 

 

 

increase five points (∆𝑋𝑡 = 5), market Y return will first increase 1.5 points immediately (5 * 

0.3, the coefficient of β0). Although this increase in X market return might disturb the 

equilibrium, the SEECM implies that market Y return and market X return have an 

equilibrium relationship through the error correction process, that is, a 10-point increase in Y 

(5 * 2, the coefficient of γ). However, the increase in market Y return (or re-equilibration) is 

not immediate, occurring over future time periods at a rate dictated by β1. The largest portion 

of the movement in market Y return will occur in the next time period when a 5-point 

increase in Y (10 * 0.5, the coefficient of β1) will occur. In the following time period, (t + 1), 

market Y return will increase 2.5 points, increasing 1.25 points at t + 2 and .63 points in t+3 

and so on until market Y return has increased ten points. Thus, market X return has two 

effects on market Y return: one effect that occurs immediately and another effect that is 

dispersed across future time periods. This error correction process might be in trouble during 

crisis periods. For instance, an occurrence of β1 > 0 or β1 < −1 during crisis periods 

might lead to extreme divergence of market returns. 

 

B. Linking LFM and SEECM 

We link the SEECM equation (3) to the LFM equation (1) to model market dynamics 

between two markets under integration. This linking process yields a proper model for 

identifying contagion via a Bayesian approach. To link two models, we introduce 

autoregressive (AR) errors  𝑢𝑥,𝑡 and 𝑢𝑦,𝑡 for LFM as follows:  

Proposition 1. Suppose that we employ an AR(1) model for idiosyncratic factors 𝑢𝑥,𝑡 and 

𝑢𝑦,𝑡 in equation (1),  

             𝑢𝑥,𝑡 = 𝜌𝑥𝑢𝑥,𝑡−1 + 𝑎𝑢,𝑡            𝑢𝑦,𝑡 = 𝜌𝑦𝑢𝑦,𝑡−1 + 𝑏𝑢,𝑡              (4) 

where 𝐸�𝑎𝑢,𝑡𝑊𝑡� = 0, 𝐸�𝑎𝑢,𝑡𝑢𝑥,𝑡� = 0, 𝐸�𝑏𝑢,𝑡𝑊𝑡� = 0, 𝐸�𝑏𝑢,𝑡𝑢𝑦,𝑡� = 0,𝐸�𝑎𝑢,𝑡𝑏𝑢,𝑡� = 0 , 

𝑎𝑢,𝑡 ~ 𝑖𝑖𝑖 (0,1),𝑎𝑎𝑖  𝑏𝑢,𝑡 ~ 𝑖𝑖𝑖 (0,1). Then, we have linked the SEECM to the LFM as 

follows: 

           ∆𝑌𝑡 = 𝜃𝑦
𝜃𝑥
∆𝑋𝑡 − �1 − 𝜌𝑦� �𝑌𝑡−1 −

𝜃𝑦(1−𝜌𝑥)

𝜃𝑥�1−𝜌𝑦�
𝑋𝑡−1� + 𝜀𝐿𝑡             (5) 
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where 𝜀𝐿𝑡 = 𝛿𝑦𝑏𝑢,𝑡 −
𝜃𝑦
𝜃𝑥
𝛿𝑥𝑎𝑢,𝑡 + (𝜌𝑥 − 𝜌𝑦 )𝜃𝑦𝑊𝑡−1  are iid over t, 0 < 𝜌𝑦 < 1 , and 

𝑉𝑎𝑉(𝜀𝐿𝑡 ) = 𝛿𝑦2 + �𝜃𝑦
𝜃𝑥
𝛿𝑥�

2
+ (𝜌𝑥 − 𝜌𝑦)2𝜃𝑦2. 

Proof of Proposition 1 is given in Appendix A. 

Remark 1. Recalling that 𝜃𝑥 and 𝜃𝑦 indicate the systematic risk of markets X and Y, 

respectively, due to a common factor 𝑊𝑡 in equation (1), 𝜃𝑦
𝜃𝑥

 refers to the ratio of systematic 

risk of market Y to that of market X. The variance of idiosyncratic factors of X and Y are 

Var�𝑢𝑥,𝑡� = 1/(1 − 𝜌𝑥2) and  Var�𝑢𝑦,𝑡� = 1/(1 − 𝜌𝑦2) by equation (4), respectively. It is 

easy to expect that the market-specific volatilities become high as 𝜌𝑥 and 𝜌𝑦 are close to 1 

during a crisis period. In this sense, |ρx|(< 1)  and �ρy�(< 1 ) imply reasonable 

predictability of idiosyncratic factor of X and Y, respectively. Also the condition 0 < 𝜌𝑦 < 1 

is necessary for the equilibrating mechanism to work. Proposition 1 implies that policy 

makers of X and Y have their own market control measures via ρx and ρy. 

 

Remark 2. Using Proposition 1, we have the following: 

   ∆𝑌𝑡 = 𝜃𝑦
𝜃𝑥
∆𝑋𝑡 − �1 − 𝜌𝑦� �𝑌𝑡−1 −

𝜃𝑦(1−𝜌𝑥)

𝜃𝑥�1−𝜌𝑦�
𝑋𝑡−1� + 𝜀𝐿𝑡    

= 𝛽𝐿0∆𝑋𝑡 + 𝛽𝐿1(𝑌𝑡−1 − 𝛾𝐿𝑋𝑡−1) + 𝜀1𝑡  = 𝛽𝐿0∆𝑋𝑡 + 𝛽𝐿1𝑌𝑡−1 + 𝛽𝐿2𝑋𝑡−1 + 𝜀𝐿𝑡.   (6)     

where βL0 = 𝜃𝑦
𝜃𝑥

, γL = 𝜃𝑦(1−𝜌𝑥)

𝜃𝑥�1−𝜌𝑦�
 and βL2 = 𝜃𝑦(1−𝜌𝑥)

𝜃𝑥
 correspond to short-term effect, long-

term effect and correlatedness for the linked model, respectively4. It should be mentioned 

here that based on equation (5) and equation (6), βL0 = θy
θx

 is entirely embedded in γL, βL2 

and εLt. This feature not only plays a key role in defining a contagion formally but also 

provides critical information for implementing the Bayesian approach. Refer to Section 3.3. 

Note that 𝜀𝐿𝑡 of equation (5) depends on Wt−1, suggesting endogeneity, which usually leads 
                                           
4 Note that 𝛽1 represents the scaled inverse of market-specific volatility of market Y from 𝛽𝐿1 = −�1 − 𝜌𝑦� =
−�1−𝜌𝑦��1+𝜌𝑦�

�1+𝜌𝑦�
= 1

𝑉𝑉𝑉(𝑢𝑦,𝑡)
 −1
(1+𝜌𝑦)

 . 
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to causality direction runs in both direction (from X to Y and from Y to X). Refer to Dungey, 

Fry, Gonza´ lez-Hermosillo, and Martin (2005). 

 

C. Market integration hypothesis 

    In this subsection, we establish a market integration hypothesis (MIH) that corresponds 

to a market condition during tranquil periods. Since Proposition 1 specifies general market 

dynamics between X and Y, one may base a purely tranquil period as null against crisis 

period. We start with the following Proposition 2. 

 

Proposition 2. Assume the null MIH as follows:  

MIH: 𝜌𝑥 = 𝜌𝑦 = 𝜌0 for some 0 < 𝜌0 < 1,  𝜃𝑦
𝜃𝑥
≠ 1, and   𝜃𝑥𝜃𝑦 ≠ 0.        (7) 

Then, under the null MIH, equation (5) might be rewritten as follows: 

              ∆𝑌𝑡 = 𝜃𝑦
𝜃𝑥
∆𝑋𝑡 − (1 − 𝜌0) �𝑌𝑡−1 −

𝜃𝑦
𝜃𝑥
𝑋𝑡−1� + 𝜀𝑀𝑡                (8) 

where 𝜀𝑀𝑡 = 𝛿𝑦𝑏𝑢,𝑡 −
𝜃𝑦
𝜃𝑥
𝛿𝑥𝑎𝑢,𝑡  is an iid error with 𝐸(𝜀𝑀𝑡) = 0 and finite variance of 

𝑉𝑎𝑉(𝜀𝑀𝑡 ) = 𝛿𝑦2 + �𝜃𝑦
𝜃𝑥
𝛿𝑥�

2
.  

Proof of Proposition 2. Equation (8) follows easily by applying equation (7) to equation (5).   

 

Remark 3. The null MIH above implies a situation of two markets that lies midway between 

the two extremes of perfect integration into one market and two completely independent 

markets. If two markets are completely integrated into one, then 𝛿𝑥 = 𝛿𝑦,  𝑎𝑢,𝑡 = 𝑏𝑢,𝑡, 𝜃𝑥 =

𝜃𝑦, and 𝜌𝑥 = 𝜌𝑦 = 𝜌0  for any 0 ≤ 𝜌0 < 1. Then, ∆𝑌𝑡 = ∆𝑋𝑡. In contrast, if two markets 

are completely independent, then 𝜃𝑦 = 0 or 𝜃𝑥 = 0. When 𝜃𝑦 = 0  (𝜃𝑥 = 0), we have 

∆𝑌𝑡 = −�1 − 𝜌𝑦�𝑌𝑡−1 + 𝛿𝑦𝑏𝑢,𝑡  (∆Xt = −(1 − 𝜌𝑥)𝑋𝑡−1  + 𝛿𝑥𝑎𝑢,𝑡), where ∆𝑌𝑡  (∆Xt) is not 

affected by any factor related to 𝑋𝑡 (𝑌𝑡). In other words, the markets do not have a common 

factor. Of course, 𝑋𝑡 = 𝛿𝑥𝑢𝑥,𝑡  and 𝑌𝑡 = 𝛿𝑦𝑢𝑦,𝑡 when θx = 𝜃𝑦 = 0. Using Proposition 2, 

we have the following: 
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∆𝑌𝑡 =
𝜃𝑦
𝜃𝑥
∆𝑋𝑡 − (1 − 𝜌0) �𝑌𝑡−1 −

𝜃𝑦
𝜃𝑥
𝑋𝑡−1� + 𝜀𝑀𝑡 

= 𝛽𝑀0∆𝑋𝑡 + 𝛽𝑀1(𝑌𝑡−1 − 𝛾𝑀  𝑋𝑡−1) + 𝜀𝑀𝑡  = 𝛽𝑀0∆𝑋𝑡 + 𝛽𝑀1𝑌𝑡−1 + 𝛽𝑀2𝑋𝑡−1 + 𝜀𝑀𝑡   (9) 

where 𝛽𝑀0 = γM = 𝜃𝑦
𝜃𝑥

  and βM2 = 𝜃𝑦(1−𝜌0)

𝜃𝑥
 correspond to short-term effect, long-term 

effect and correlatedness for the MIH, respectively. This equation subsequently implies the 

basic linear relationship between two markets during a tranquil period, that is, 

                                  ∆𝑌𝑡 : = 𝜃𝑦
𝜃𝑥
∆𝑋𝑡                           (10) 

 

Remark 4. The MIH implies that the market-specific volatility is the same in markets X and 

Y (ρx = ρy = ρ0), and they share a common factor �θxθy ≠ 0� with different levels of 

systematic risk (θy
θx
≠ 1). This notion is consistent with financial market theory. The theory 

indicates that only global systematic risks are priced in two fully integrated markets or the 

integration leads to the conversion of a market-specific risk of each market into a common 

risk, that is, the local market-specific risks are fully diversified for integrated markets 

(Lehkonen (2015)). In other words, by letting 𝜌𝑥 = 𝜌𝑦 in equation (4), the MIH achieves the 

two fully integrated markets without any endogeneity problem5. The condition 0 < 𝜌𝑥 =

𝜌𝑦 = 𝜌0 < 1 is essential for the convergence to the equilibrium in equation (9) (i. e. ,−1 <

 𝛽M1 < 0 in equation (9))6. Hence, it is reasonable to discuss market contagion by testing the 

MIH as a proper null hypothesis. Testing MIH with ∆𝑌𝑡 : = 𝜃𝑦
𝜃𝑥
∆𝑋𝑡 of equation (10) enables 

us to accurately detect the comovement in excess of that implied by the linked model. 

  

 

                                           
5 No endogeneity under the MIH does not mean that the contemporaneous causality direction runs only in one 
direction, from X to Y. It means that two markets are completely integrated or completely exchangeable via 
equation (8).  

6 Note that an immediate endogeneity problem exists; hence, the contemporaneous causality direction runs in 
both directions when 0 < 𝜌𝑥 ≠ 𝜌𝑦 < 1. 
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D. Resolving the two critical issues 

In this subsection, we show that the linked model resolves the two critical issues for 

identifying contagions discussed in the Introduction: (i) how asset correlation is related to 

common and market-specific factors during tranquil and crisis periods and (ii) how all time-

varying components of return volatilities are related to structural breaks in crisis times. For 

the first issue, note from equation (6) that long-term effect (γL = θy(1−ρx)

θx�1−ρy�
) and correlatedness 

(βL2 = θy(1−ρx)

θx
 ) are related to a common factor via θy

θx
 and to market specific-factors 

through  (1 − ρx) and �1 − ρy� under general situations, including crisis periods. Under 

MIH (or during a tranquil period), these factors are reduced to γM = θy
θx

 and βM2 = θy(1−ρ0)

θx
 

in equation (9). Thus, our linked model shows how correlation between two markets is 

related to common and market-specific factors during tranquil and crisis periods. For the 

second issue, note that our linked model defines the volatility spillover clearly and simply by 

taking into account systematic (common) as well as market-specific volatility spillover. 

Recalling that 𝜃𝑦
𝜃𝑥

 is related to systematic volatility and that  ρx  and  ρy  are related to 

market-specific volatility, the volatility spillover occurs due to changes in (θy
θx

,  ρx,  ρy) 

caused by a shock. These volatility changes cause direct changes in short-term effect 

(βL0 = θy
θx

), long-term effect (γL = θy(1−ρx)

θx�1−ρy�
), correlatedness (βL2 = θy(1−ρx)

θx
) or convergence 

speed to equilibrium (𝛽𝐿1 = −�1 − 𝜌𝑦�). When MIH is rejected or (𝜃𝑦
𝜃𝑥

,  𝜌0,  𝜌0) under 

MIH changes to (𝜃𝑦
′

𝜃𝑥′
,  𝜌𝑥′ ,  𝜌𝑦′ ), error volatility under MIH changes from Var(εMt ) = 𝛿𝑦2 +

�θy
θx
𝛿𝑥�

2
 to  

Var(εLt ) = 𝛿𝑦2 + �𝜃𝑦
′

𝜃𝑥′
𝛿𝑥�

2
+ � 𝜌𝑥′ −  𝜌𝑦′ �

2
𝜃𝑦′ 2               (11) 

Thus, equation (11) defines the volatility spillover related to systematic (𝜃𝑦
′

𝜃𝑥′
) as well as 

market-specific volatility ( 𝜌𝑥′ ,  𝜌𝑦′ ). This explains how all time-varying components of return 

volatilities are related to structural breaks in crisis times.  
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In the literature, volatility spillover is often treated by tail dependence of market return. 

Indeed, Rodriguez (2007) notes that structural breaks in tail dependence are an actual 

dimension of the contagion effects and tests them by applying copulas. Bussetti and Harvey 

(2011) use time-varying copulas to test financial contagion via tail events. Using 

coexceedance measures or quantiles, a number of studies also detect the contagion via tail 

events (Bae et al. (2003), Baur and Schulze (2005), Boyson et al. (2010)). Aït-Sahalia et al. 

(2015) measure contagion effects via extreme tail event of mutually exciting jumps. Recently, 

Dungey and Renault (2108) apply a GARCH common feature approach for identifying 

contagion. 

 

III. Contagion dynamics and test procedure 

 

A. Defining contagion and testing breaks in the relationship between markets 

In this section, we define contagion using the concept of a “break” in the relationship 

between two markets. A shock that occurs in a market might cause a break in the established 

relationship with the other market and result in a contagion. We consider three types of 

breaks in market relationships: a break in short-term relationship or short-term break (SB), a 

break in long-term relationship or a long-term break (LB) and a break in correlatedness or a 

correlatedness break (CRB). A contagion is expected to occur when a shock causes a break in 

an underlying relationship pertaining to 𝛽𝐿0  (short-term), γL  (long-term), and 𝛽𝐿2 

(correlatedness) in equation (6). Since ∆𝑌𝑡: = 𝜃𝑦
𝜃𝑥
∆𝑋𝑡 is the underlying linear relationship 

under the MIH (equation (10)) and 𝛽𝐿0 = 𝜃𝑦
𝜃𝑥

 is the short-term effect, we have the following 

formal definition of a contagion. 

Definition) A contagion is declared if a long-term break (a break in 𝛾𝐿 = 𝜃𝑦(1−𝜌𝑥)

𝜃𝑥�1−𝜌𝑦�
) or a 

correlatedness break (a break in 𝛽𝐿2 = 𝜃𝑦(1−𝜌𝑥)

𝜃𝑥
) is mainly caused by a short-term break (a 
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break in 𝛽𝐿0 = 𝜃𝑦
𝜃𝑥

)7. 

This definition implies that a contagion is declared when the short-term effect of a shock is 

not controlled properly at the beginning of the crisis period and continues to cause breaks in 

long-term relationship or correlatedness between two markets.  

First, we are concerned with finding whether a shock causes a break in the established 

linear relationship under the MIH. Therefore, we need to test whether a given period 

experiences breaks in the relationships pertaining to 𝛽𝑀0 (short-term), γM (long-term), and 

𝛽𝑀2 (correlatedness) in equation (9). We develop a test adopting quantile regression and the 

Z-test for testing such breaks. Refer to Baur (2013) for more detailed discussions about the 

advantages of using quantile regression. Our test is based on the idea that a random 

fluctuation of the slope estimates around a constant value (with only the intercept parameters 

systematically increasing as a function of quantile ϑ) provides evidence for the iid error of 

the classical linear regression under the null MIH specified by equation (9). If some of the 

slope coefficients change as a function of quantile 0 ≤ ϑ ≤ 1, then we detect it via the Z-test, 

which is designed to assess the magnitude of the estimated change in slope for a given 

quantile. To test the null MIH, we establish the following hypotheses. 

𝐻0 ∶  𝛽L0 = 𝛽M0, 𝛽L1 = 𝛽M1, 𝛽L2 = 𝛽M2 (𝛽L0 = 𝛽M0, 𝛾𝐿 = 𝛾M, 𝛽L2 = 𝛽M2, equivalently)  

𝐻𝑉 : At least one of the followings holds; 

 𝛽L0 ≠ 𝛽M0, 𝛽L1 ≠ 𝛽M1, 𝛽L2 ≠  𝛽M2  (𝛽L0 ≠ 𝛽M0, 𝛾𝐿 ≠ 𝛾M,𝛽L2 ≠ 𝛽M2, equivalently) 

 

The above null hypothesis 𝐻0 illustrates that 𝛽𝑀0, 𝛾𝑀, and 𝛽𝑀2 are fixed with iid error 

εMt as noted in equation (9). In other words, markets X and Y maintain 𝛽𝐿0  = 𝛽M0, 

𝛾𝐿 = 𝛾M, and 𝛽𝐿2 = 𝛽M2 under the MIH. If we reject 𝐻0, then the MIH fails to hold. In this 

                                           
7 Note that a long-term break or a correlatedness break can be caused by changes in (ρx, ρy) rather than by 

changes in 𝜃𝑦
𝜃𝑥

. This case is not considered as a contagion here because a break in the long-term relationship is 
not caused by a break in the underlying basic linear relationship (or a short-term break). 
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case, the markets fail to maintain their underlying relationship and experience breaks in the 

short- or long-term relationship or correlatedness. 

To implement the test, we estimate the quantile regression parameters across the entire 

range of conditional quantiles of ∆𝑌𝑡  given ∆𝑋𝑡 . We estimate (𝛽L0, 𝛾L,𝛽L2) using the 

quantile regression across fixed 𝑁 quantiles. Let ��̂�L0𝑗, 𝛾�L𝑗, �̂�L2𝑗� be the slope estimates of 

�𝛽L0𝑗, 𝛾L𝑗,𝛽L2𝑗� from the 𝑗
𝑁+1

𝑡ℎ quantile regression for 𝑗 = 1,⋯ ,𝑁. Using the Proposition 

B in the Appendix B, one may derive the Z-test as follows. Let 𝑃𝑖 be (𝜑�𝑖1,⋯ ,𝜑�𝑖𝑁), where 

φ�𝑖𝑗(𝑖 = 1,2,3,   𝑗 = 1, . . ,𝑁) is the ith slope estimate for one of the three slope estimates (�̂�L0j, 

𝛾�L𝑗, �̂�L2𝑗) from the 𝑗
𝑁+1

𝑡ℎ quantile regression. Let 𝑃 𝑖,−𝑘 represent a vector constructed by 

excluding the kth element from 𝑃𝑖 = (𝜑�𝑖1,⋯ ,𝜑�𝑖𝑁). For example, 𝑃𝑖,−1 = �𝜑�𝑖2,⋯ ,𝜑�𝑖,𝑁� and 

𝑃𝑖,−𝑁 = �𝜑�𝑖1,⋯ ,𝜑�𝑖,𝑁−1�. Then, 

                         𝑍𝑖,𝑘 =  𝜑�𝑖𝑖−𝑚𝑖
𝑠𝑖

 is N(0,1) asymptotically8             (12)  

with mean 𝑚𝑘 and standard deviation sk from 𝑃𝑖,−𝑘. This Z-test can be employed to test 

the following hypotheses. 

 

𝐻0𝑆𝑆: �̂�L0𝑘 originates from the same normal distribution as the others in 𝑃1 under 𝐻0 (or 

there is no short-term break between X and Y in the 𝑘
𝑁+1

𝑡ℎ quantile). 

𝐻1𝑆𝑆:  �̂�L0𝑘  does not originate from the same normal distribution as the others in 𝑃1 

under 𝐻a (or there is a short-term break between X and Y in the 𝑘
𝑁+1

𝑡ℎ quantile). 

𝐻0𝐿𝑆:  𝛾�L𝑘 originates from the same normal distribution as the others in 𝑃2 under 𝐻0 (or 

there is no long-term break between X and Y in the 𝑘
𝑁+1

𝑡ℎ quantile). 

                                           
8 This holds based on Proposition B in Appendix B and the weak law of large numbers under 𝐻0. 
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𝐻1𝐿𝑆: 𝛾�L𝑘 does not originate from the same normal distribution as the others in 𝑃2 under 𝐻a 

(or there is a long-term break between X and Y in the 𝑘
𝑁+1

𝑡ℎ quantile). 

𝐻0𝐶𝐶𝑆: �̂�L2𝑘 originates from the same normal distribution as the others in 𝑃3 under 𝐻0 (or 

there is no correlatedness break between X and Y in the 𝑘
𝑁+1

𝑡ℎ quantile). 

𝐻1𝐶𝐶𝑆: �̂�L2𝑘  does not originate from the same normal distribution as the others in 𝑃3 

under 𝐻a (or there is a correlatedness break between X and Y in the 𝑘
𝑁+1

𝑡ℎ quantile). 

 

As a break in the established relationship is expected to occur at low quantiles during crisis 

periods, a contagion test can use the slope estimates at low quantiles, namely  �̂�L01, 𝛾�L1,  or 

�̂�L21. Selection of the low quantile might be justified by the fact that during the crisis period 

when ∆𝑋𝑡 decreases, ∆𝑌𝑡  tends to decrease more significantly than usual. Hence, a 

significant change in θy
θx

  at low quantile is expected (recall ∆𝑌𝑡 : = θy
θx
∆𝑋𝑡 under MIH by 

equation (10)). In summary, quantile regression is employed here to handle the contagion as a 

low tail event. By rejecting 𝐻0𝑆𝑆, 𝐻0𝐿𝑆, or 𝐻0𝐶𝐶𝑆 using �̂�L01, 𝛾�L1,  or �̂�L21, respectively, we 

can conclude breaks in the short-term relationship, long-term relationship, or correlatedness 

during crisis periods, respectively.  

 

B. Contagion dynamics against the MIH 

From the null MIH and hence equation (9), various kinds of situations can occur when a 

shock hits the market X. Changes in (𝜃𝑦
𝜃𝑥

,  𝜌𝑥, 𝜌𝑦) (and hence volatility spillover by equation 

(11)) caused by a shock bring about structure breaks in short- or long-term effects or 

correlatedness (𝛽𝐿0,γL, 𝛽𝐿2). There are eight possible cases in terms of breaks in short- or 

long-term effects or correlatedness (𝛽𝐿0, γL, 𝛽𝐿2), resulting from the changes in (𝜃𝑦
𝜃𝑥

,  𝜌𝑥, 𝜌𝑦). 

Table 1 summarizes the eight possible situations (S1-S8) with their causality relations 

between (𝜃𝑦
𝜃𝑥

,  𝜌𝑥, 𝜌𝑦) and (𝛽𝐿0, γL, 𝛽𝐿2) when a shock hits the market X. In the Appendix C, 
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we verify the causality relations of eight situations in Table 1. In the last column of Table 1, 

contagion check is addressed. “No” and “Contained” 9  indicate escape of contagion. 

“Additional check required” indicates that a further check is needed to conclude a contagion.  

Table 1 Contagion dynamics table  
This table shows eight possible situations that can occur when a shock hits the market X 
under equation (9). It also shows the causality relations between volatility change and 
structure break due to a shock to market X. The letters “C” and “NC” in the Causal volatility 
columns denote “change” and “no change,” respectively. The “UND” denotes that “change” 
or “no change” is possible, but it is undecided. The letters “SB,” “LB,” “CRB,” “NSB,” 
“NLB,” and “NCRB” in the Structure break columns denote short-term break, long-term 
break, correlatedness break, no short-term break, no long-term break, and no correlatedness 
break, respectively. The last column shows a contagion check where “No” and “Contained” 
indicate escape of contagion while “Additional check required” indicates that a further check 
is needed to conclude a contagion. 
 

Classifi-
cation 

Causal volatility  Structure break 

Contagion check 
𝜃𝑦
𝜃𝑥

 𝜌𝑥 𝜌𝑦 
Short-Term 

Effect  
 (𝛽𝐿0) 

Long-Term      
Effect    
(γL) 

Correlated-
ness 
(𝛽𝐿2) 

S-1 NC NC NC NSB NLB NCRB No 

S-2 NC C C NSB NLB CRB No 

S-3 NC NC C NSB LB NCRB Contained 

S-4 C C NC SB  NLB NCRB Contained 

S-5 NC C UND NSB LB  CRB  Contained 

S-6 C UND UND SB  NLB CRB  Additional check 
required 

S-7 C C UND SB  LB  NCRB Additional check 
required 

S-8 C UND UND SB LB CRB Additional check 
required  

 

                                           
9 Difference between “NO” and “Contained” is whether volatility spillover given by equation (11) occurs. Refer 
to Verifications of Table 1 in Appendix C.    
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Remark 5 (Contagion test bias).  As noted in Table 1, a one-to-one relation between causal 

volatility vs structure break exists for S-1 to S-4 (i.e., it contains no UND), while no such 

one-to-one relation exists for S-5 to S-8 (i.e., it contains UNDs)10. The case of S-1 covers the 

case of normal MIH. The case of S-2 handles the contagion bias from correlatedness break 

(CRB) about which Forbes and Rigobon (2002) are most concerned. The case of S-3 handles 

the contagion bias from long-term break (LB). The case of S-4 handles the bias from short-

term break (SB). This finding is related to the study of Favero and Giavazzi (2002) where 

they employ a nonlinearity technique to detect a short-term effect in its opposite direction to 

observe ‘flight to quality’. The case of S-5 contains contagion via exclusively keeping 
θy
θx

; hence, it might be considered as handling contagion bias from long-term break (LB) and 

correlatedness break (CRB) simultaneously. Note that S-5 is unlikely to occur in reality. The 

cases of S-6, S-7 and S-8 are basically concerned about the possible bias from short-term 

break (SB) as noted in S-4. In these cases, further checks are necessary because SB and CRB 

or SB and LB occur simultaneously.  

 

C. Identifying contagion using a Bayesian approach 

The change in underlying linear relationship or short-term effect 𝛽𝐿0 = 𝜃𝑦
𝜃𝑥

 is further 

checked to determine whether it is the main force behind a break in long-term relationship 

(LB or CRB). Actually, the Bayesian approach is invoked to calculate the related posterior 

probabilities. Following the definition of the contagion, the occurrence of a contagion can be 

investigated by calculating the posterior probabilities of P(𝑆𝑆|𝐿𝑆)  𝑜𝑉  𝑃(𝑆𝑆|𝐶𝐶𝑆). The 

posterior probability of P(𝑆𝑆|𝐿𝑆) (P(𝑆𝑆|𝐶𝐶𝑆)) is interpreted as a probability that LB (CRB) 

is caused by SB when LB (CRB) is given or as the ratio that SB explains LB (CRB). For S-1, 

S-2, S-3 and S-5, P(𝑆𝑆|𝐿𝑆) = 𝑃(𝑆𝑆|𝐶𝐶𝑆) = 0 because they belong to NSB. For S-4, 

P(𝑆𝑆|𝐿𝑆) = 𝑃(𝑆𝑆|𝐶𝐶𝑆) = 0 again because it belongs to NLB and NCRB simultaneously. 

                                           
10 Although causal volatility parts for S-6 and S-8 are identical, they are technically different in the sense that 
the UND for S-6 requires additional causal volatility restrictions for 𝜌𝑥 and 𝜌𝑦. See verification of Table 1 in 
Appendix C. 
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Thus, either no or contained contagion is reported for S-1 to S-5. 

For S-6, one needs to calculate P(SB|CRB) > 0  (i.e., it belongs to SB and CRB). Since 

correlatedness 𝛽𝐿2 = 𝜃𝑦(1−𝜌𝑥)

𝜃𝑥
 consists of 𝜃𝑦

𝜃𝑥
 and (1 − ρx), an additional check is necessary 

to decide whether CRB is mainly due to the change in 𝜃𝑦
𝜃𝑥

 (SB) or the change in (1 − ρx). 

The posterior probability that a correlated break (CRB) is caused by the changes in 𝜃𝑦
𝜃𝑥

 (or 

SB) is calculated by P(𝑆𝑆|𝐶𝐶𝑆) = 𝑃(𝑆𝑆)𝑃(𝐶𝐶𝑆|𝑆𝑆)
𝑃(𝐶𝐶𝑆) . For S-7, one needs to calculate 

P(SB|LB) > 0  (i.e., it belongs to SB and LB). Since the long-term effect 𝛾L = 𝜃𝑦(1−𝜌𝑥)

𝜃𝑥�1−𝜌𝑦�
 

consists of 𝜃𝑦
𝜃𝑥

 and (1−𝜌𝑥)
�1−𝜌𝑦�

, an additional check is necessary to decide whether LB is mainly 

due to the change in 𝜃𝑦
𝜃𝑥

 (SB) or the change in (1−𝜌𝑥)
�1−𝜌𝑦�

. The posterior probability that the long-

term break (LB) is caused by the changes in 𝜃𝑦
𝜃𝑥

 (or SB) is calculated by P(𝑆𝑆|𝐿𝑆) =

𝑃(𝑆𝑆)𝑃(𝐿𝑆|𝑆𝑆)
𝑃(𝐿𝑆) . For S-8, one needs to further check that LB or CRB are due to the change in 𝜃𝑦

𝜃𝑥
 

by calculating the posterior probabilities of P(𝑆𝑆|𝐿𝑆) and 𝑃(𝑆𝑆|𝐶𝐶𝑆). 

Our contagion test procedure is summarized as follows:  

(i) Assume the model (6) for target market Y and source market X, 

∆𝑌𝑡 = 𝜃𝑦
𝜃𝑥
∆𝑋𝑡 − �1 − 𝜌𝑦� �𝑌𝑡−1 −

𝜃𝑦(1−𝜌𝑥)

𝜃𝑥�1−𝜌𝑦�
𝑋𝑡−1� + 𝜀𝐿𝑡    

= 𝛽𝐿0∆𝑋𝑡 + 𝛽𝐿1(𝑌𝑡−1 − 𝛾𝐿𝑋𝑡−1) + 𝜀1𝑡  = 𝛽𝐿0∆𝑋𝑡 + 𝛽𝐿1𝑌𝑡−1 + 𝛽𝐿2𝑋𝑡−1 + 𝜀𝐿𝑡 

(ii) Establish the null hypotheses for coefficients in the 𝑘
𝑁+1

𝑡ℎ quantile that corresponds 

to the crisis period across fixed N quantiles: 𝐻0𝑆𝑆 𝑣𝑣 𝐻1𝑆𝑆 (short-term break), 

𝐻0𝐿𝑆𝑣𝑣 𝐻1𝐿𝑆(long-term break), and 𝐻0𝐶𝐶𝑆 𝑣𝑣. 𝐻1𝐶𝐶𝑆(correlatedness break). 

(iii) Apply Z-test given by equation (12) with selected 𝑘 for (𝛽L0, 𝛾L,𝛽L2).   
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(iv) Using the test results from step (iii) and Table 1, complete the Bayesian test by 

calculating posterior probabilities of P(SB│LB) and P(SB│CRB). If the posterior 

probability is greater than a specified value 𝜃0, a contagion is declared.      

 

For calculating posterior probabilities of 𝑃(𝑆𝑆|𝐿𝑆) 𝑎𝑎𝑖 𝑃(𝑆𝑆|𝐶𝐶𝑆), the p-values from step 

(iii) of the contagion test process are used to estimate the related probabilities. We use the p-

values from testing 𝐻0𝑆𝑆,𝐻0𝐿𝑆  and 𝐻0𝐶𝐶𝑆  as estimates of 𝑃(𝑆𝑆),𝑃(L𝑆) and 𝑃(CR𝑆) , 

respectively. Recalling that the p-value is the probability, under H0, of obtaining a result 

equal to or more extreme than what was actually observed, 𝑃(𝑆𝑆|𝐿𝑆) is interpreted as the 

posterior probability that LB is caused by SB when LB is given or as the ratio in which SB 

explains LB. Since 𝛾𝐿 = 𝛽𝐿0
1−𝜌𝑥
1−𝜌𝑦

 with independent multiplication components 𝛽𝐿0 and 

1−𝜌𝑥
1−𝜌𝑦

, it is logical to assume that the break in 𝛽𝐿0 or 1−𝜌𝑥
1−𝜌𝑦

 causes the break in 𝛾𝐿. Recalling 

that βL2 = 𝛽𝐿0 (1− 𝜌𝑥) with independent multiplication components 𝛽𝐿0 and (1 − 𝜌𝑥) , 

𝑃(𝑆𝑆|𝐶𝐶𝑆) can be obtained in a similar fashion. For P�(L𝑆|𝑆𝑆) and P�(CR𝑆|𝑆𝑆), one may 

estimate them from given testing results, which test 𝐻0𝑆𝑆,𝐻0𝐿𝑆  and 𝐻0𝐶𝐶𝑆  across 𝑚 

different target markets Ys given the same source market X. Suppose that tests yielded the 

m1 Ys having experienced SB, m2 Ys having experienced LB, 𝑚3 Ys having experienced 

CRB, m12 Ys having experienced SB and LB, and m13 Ys having experienced SB and CRB. 

Then, P�(L𝑆|𝑆𝑆) = 𝑚12
m1

 and P�(CR𝑆|𝑆𝑆) = 𝑚13
m1

. Using those estimates of conditional 

probabilities we obtain P�0(𝑆𝑆|𝐿𝑆) = P�(𝑆𝑆)P�(𝐿𝑆|𝑆𝑆)
P�(𝐿𝑆)  and P�0(𝑆𝑆|𝐶𝐶𝑆) = P�(𝑆𝑆)P�(𝐶𝐶𝑆|𝑆𝑆)

P�(𝐶𝐶𝑆) . If 

P�0(𝑆𝑆|𝐿𝑆) or P�0(𝑆𝑆|𝐶𝐶𝑆) exceeds one, the posterior probability is set equal to one. Thus, 

we have posterior probability estimators as follows: 

                     P�(𝑆𝑆|𝐿𝑆) = 𝑚𝑖𝑎�P�0(𝑆𝑆|𝐿𝑆), 1�                     

 P�(𝑆𝑆|𝐶𝐶𝑆) = 𝑚𝑖𝑎�P�0(𝑆𝑆|𝐶𝐶𝑆), 1�                    
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IV. Conclusion  

In the literature, contagion tests are known to suffer from various biases, which started 

with ‘interdependence, not contagion issue’ as noted by Forbes and Rigobon (2002). 

Considerable studies have been performed to remove confounding effects or contagion biases 

from the comovement or correlation in excess. Solutions to the two critical issues have been 

pursued by employing various models. This paper resolves these critical issues by linking 

LFM and SEECM and applying the Bayesian approach, which determines the cause of the 

breaks in long-term relationship or correlatedness. Our contagion test is based on a more 

concrete definition of contagion, which is given by a long-term or correlatedness break 

mainly caused by a short-term break, and easy to implement. From a statistical point of view, 

the correlation bias issue here is closely related to the well-known statistical issue of 

correlation versus causation. In this paper, we overcome the correlation bias issue by 

accurately determining the cause of excessive correlation using a Bayesian approach.  
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Appendix A. Proof of Proposition 1. 

 The following may easily be derived from equation (1) 

   ∆𝑌𝑡 =
𝜃𝑦
𝜃𝑥
∆𝑋𝑡 − �𝑌𝑡−1 −

𝜃𝑦
𝜃𝑥
𝑋𝑡−1� −

𝜃𝑦
𝜃𝑥
𝛿𝑥𝑢𝑥,𝑡 + 𝛿𝑦𝑢𝑦,𝑡 

Then, it is easy to verify that  

    ∆𝑌𝑡 =
𝜃𝑦
𝜃𝑥
∆𝑋𝑡 − �1 − 𝜌𝑦� �𝑌𝑡−1 −

𝜃𝑦(1 − 𝜌𝑥)
𝜃𝑥�1 − 𝜌𝑦�

𝑋𝑡−1� −
𝜃𝑦
𝜃𝑥
𝛿𝑥𝑢𝑥,𝑡 + 𝛿𝑦𝑢𝑦,𝑡 − 𝜌𝑦𝑌𝑡−1

+ 𝜌𝑥
𝜃𝑦
𝜃𝑥
𝑋𝑡−1 

=
𝜃𝑦
𝜃𝑥
∆𝑋𝑡 − �1 − 𝜌𝑦� �𝑌𝑡−1 −

𝜃𝑦(1 − 𝜌𝑥)
𝜃𝑥�1 − 𝜌𝑦�

𝑋𝑡−1� −
𝜃𝑦
𝜃𝑥
𝛿𝑥𝑢𝑥,𝑡 + 𝛿𝑦𝑢𝑦,𝑡 − 𝜌𝑦(𝜃𝑦𝑊𝑡−1

+ 𝛿𝑦𝑢𝑦,𝑡−1) +  𝜌𝑥
𝜃𝑦
𝜃𝑥

(𝜃𝑥𝑊𝑡−1 + 𝛿𝑥𝑢𝑥,𝑡−1)  

    =
𝜃𝑦
𝜃𝑥
∆𝑋𝑡 − �1 − 𝜌𝑦� �𝑌𝑡−1 −

𝜃𝑦(1 − 𝜌𝑥)
𝜃𝑥�1 − 𝜌𝑦�

𝑋𝑡−1� −
𝜃𝑦
𝜃𝑥
𝛿𝑥𝑎𝑢,𝑡 + 𝛿𝑦𝑏𝑢,𝑡 − 𝜌𝑦𝜃𝑦𝑊𝑡−1

+  𝜌𝑥𝜃𝑦𝑊𝑡−1.
 

          = 𝜃𝑦
𝜃𝑥
∆𝑋𝑡 − �1 − 𝜌𝑦� �𝑌𝑡−1 −

𝜃𝑦(1−𝜌𝑥)

𝜃𝑥�1−𝜌𝑦�
𝑋𝑡−1� + 𝛿𝑦𝑏𝑢,𝑡 −

𝜃𝑦
𝜃𝑥
𝛿𝑥𝑎𝑢,𝑡 + (𝜌𝑥 − 𝜌𝑦 )𝜃𝑦𝑊𝑡−1. 

Thus 𝜖𝐿𝑡 = 𝛿𝑦𝑏𝑢,𝑡 −
𝜃𝑦
𝜃𝑥
𝛿𝑥𝑎𝑢,𝑡 + (𝜌𝑥 − 𝜌𝑦 )𝜃𝑦𝑊𝑡−1. Now it is easy to see that 𝑉𝑎𝑉(𝜀𝐿𝑡 ) =

𝛿𝑦2 + �𝜃𝑦
𝜃𝑥
𝛿𝑥�

2
+ (𝜌𝑥 − 𝜌𝑦)2𝜃𝑦2 and 𝐶𝑜𝑣(𝜀𝐿𝑡 , 𝜖𝐿(𝑡+1)) = 0. The proof is complete. Q.E.D 

 

Appendix B. Proposition B (Refer to (3.7) of Koenker (2005), p.73). 

Under H0, with some regular conditions, the quantile slope estimates 𝛃�MN = (β�Mj)j=1N  have 

an asymptotically multivariate normal distribution N(𝛃MN , n𝐕) for 𝛃MN = (βj)j=1N  and a 

given variance covariance matrix 𝐕3N×3N as the number of observations n increases.  
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Appendix C. Verification of Table 1 

Below, we assume that equation (6) always holds as general case (i.e., equation (9) from the 

null MIH is a special case of equation (6), with 𝜌𝑥 = 𝜌𝑦 = 𝜌0). Based on equation (6), it is 

straightforward to observe that 𝛽𝐿0 = 𝜃𝑦
𝜃𝑥

, γL = 𝜃𝑦(1−𝜌𝑥)
𝜃𝑥(1−𝜌𝑦)

 , and 𝛽𝐿2 = 𝜃𝑦(1−𝜌𝑥)
𝜃𝑥

. Acceptance of 

𝛽𝐿0,𝛾𝐿, or 𝛽𝐿2 in a selected quantile (or acceptance of 𝐻0𝑆𝑆 ,𝐻0𝐿𝑆, or 𝐻0𝐶𝐶𝑆 equivalently) 

indicates no change in 𝛽𝐿0, 𝛾𝐿, or 𝛽𝐿2 (or NSB, NLB, or NCRB) in the quantile, respectively, 

when a shock hits market X. For each situation, we discuss possible volatility spillover. 

(S-1) Acceptance of 𝛽𝐿0 = 𝜃𝑦
𝜃𝑥

 (short-term), γL = 𝜃𝑦(1−𝜌𝑥)
𝜃𝑥(1−𝜌𝑦)

 (long-term) and 𝛽𝐿2 =

𝜃𝑦(1−𝜌𝑥)
𝜃𝑥

 (correlatedness) together implies no change in 𝜃𝑦
𝜃𝑥

 and 𝜌𝑥 = 𝜌𝑦 = 𝜌0. In this case, 

there is no volatility spillover at all by equation (11). Thus, S-1 follows. Clearly, S-1 escapes 

the contagion, and the contagion check is “NO”.      

(S-2) Acceptance of 𝛽𝐿0 = 𝜃𝑦
𝜃𝑥

 (short-term) and rejection of 𝛽𝐿2 = 𝜃𝑦(1−𝜌𝑥)
𝜃𝑥

 

(correlatedness) implies no change in 𝜃𝑦
𝜃𝑥

 and change of 𝜌𝑥 (or 𝜌𝑥′ ) . Acceptance of 

γL = 𝜃𝑦(1−𝜌𝑥)
𝜃𝑥(1−𝜌𝑦)

 (long-term) necessarily implies a change of 𝜌𝑦(or 𝜌𝑦′ ) such that 𝜌𝑥′ = 𝜌𝑦′ . 

Thus, S-2 follows. In this case, there is no volatility spillover at all by equation (11), that is,  

𝑉𝑎𝑉(εLt ) = 𝛿𝑦2 + �
𝜃𝑦
𝜃𝑥
𝛿𝑥�

2

+ � 𝜌𝑥′ −  𝜌𝑦′ �
2
𝜃𝑦 2 = 𝛿𝑦2 + �

𝜃𝑦
𝜃𝑥
𝛿𝑥�

2

= Var(𝜀𝑀𝑡). 

Clearly, S-2 escapes contagion, and the contagion check is “NO”. 

(S-3) Acceptance of 𝛽𝐿0 = 𝜃𝑦
𝜃𝑥

 (short-term) and 𝛽𝐿2 = 𝜃𝑦(1−𝜌𝑥)
𝜃𝑥

 (correlatedness) implies 

no change in 𝜃𝑦
𝜃𝑥

 and 𝜌𝑥. The rejection of γL = 𝜃𝑦(1−𝜌𝑥)
𝜃𝑥(1−𝜌𝑦)

 (long-term) necessarily implies a 

change of 𝜌𝑦(say, 𝜌𝑦′ ). Thus, S-3 follows. In this case, there is volatility spillover  
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𝑉𝑎𝑉(εLt ) = 𝛿𝑦2 + �𝜃𝑦
𝜃𝑥
𝛿𝑥�

2
+ �𝜌𝑥 −  𝜌𝑦′ �

2
𝜃𝑦 2 > 𝛿𝑦2 + �𝜃𝑦

𝜃𝑥
𝛿𝑥�

2
= Var(𝜀𝑀𝑡) 

and 

 ∆𝑌𝑡 = 𝜃𝑦
𝜃𝑥
∆𝑋𝑡 − �1 − 𝜌𝑦′ � �𝑌𝑡−1 −

𝜃𝑦(1−𝜌𝑥)

𝜃𝑥�1−𝜌𝑦′ �
𝑋𝑡−1� + 𝜀𝐿𝑡. 

Since a break in the basic linear relationship does not occur (or NSB), S-3 escapes the 

contagion even though there is volatility spillover and the contagion check is “Contained”. In 

this situation, market Y maintains market stability via controlling 𝜌𝑦′  (or its own market-

specific volatility) properly. 

(S-4) Rejection of 𝛽𝐿0 = 𝜃𝑦
𝜃𝑥

 (short-term) and acceptance of 𝛽𝐿2 = 𝜃𝑦(1−𝜌𝑥)
𝜃𝑥

 

(correlatedness) necessarily implies changes in 𝜃𝑦
𝜃𝑥

 and 𝜌𝑥 (or 𝜃𝑦
′

𝜃𝑥′
 and  𝜌𝑥′ ). Acceptance of 

γL = 𝜃𝑦(1−𝜌𝑥)
𝜃𝑥(1−𝜌𝑦)

 (long-term) and 𝛽𝐿2 = 𝜃𝑦(1−𝜌𝑥)
𝜃𝑥

 (correlatedness) implies no change in 𝜌𝑦 . 

Thus, S-4 follows. In this case, there might be volatility change by equation (11), that is,  

Var(εLt ) = 𝛿𝑦2 + �
𝜃𝑦′

𝜃𝑥′
𝛿𝑥�

2

+ � 𝜌𝑥′ −  𝜌𝑦�
2
𝜃𝑦′ 2 ≠ 𝛿𝑦2 + �

𝜃𝑦
𝜃𝑥
𝛿𝑥�

2

= Var(𝜀𝑀𝑡) 

and  

∆𝑌𝑡 =
𝜃𝑦′

𝜃𝑥′
∆𝑋𝑡 − �1 − 𝜌𝑦��𝑌𝑡−1 −

𝜃𝑦′ (1 − 𝜌𝑥′ )
𝜃𝑥′(1 − 𝜌𝑦)

𝑋𝑡−1� + 𝜀𝐿𝑡., 

Since a break in the long-term relationship does not occur (or NLB and NCRB), S-4 escapes 

the contagion even though there could be volatility spillover and the contagion check is 

“Contained”. In this situation, market Y maintains market stability via keeping 𝜌𝑦 

unchanged.  

 (S-5) Acceptance of 𝛽𝐿0 = 𝜃𝑦
𝜃𝑥

 (short-term) and rejection of 𝛽𝐿2 = 𝜃𝑦(1−𝜌𝑥)
𝜃𝑥

 



25 

 

 

(correlatedness) necessarily implies no change in 𝜃𝑦
𝜃𝑥

 and a change in 𝜌𝑥(or 𝜌𝑥′ ). In this case, 

rejection of γL = 𝜃𝑦(1−𝜌𝑥)
𝜃𝑥(1−𝜌𝑦)

 (long-term) do not produce any required situation for 𝜌𝑦 (i.e., 

UND) but 𝜌𝑦′ ≠ 𝜌𝑥′ . Thus, S-5 follows. In this case, volatility spillover clearly occurs by 

equation (11) as follows:  

𝑉𝑎𝑉(εLt ) = 𝛿𝑦2 + �𝜃𝑦
𝜃𝑥
𝛿𝑥�

2
+�𝜌𝑥′ −  𝜌𝑦′ �

2
𝜃𝑦 2 > 𝛿𝑦2 + �𝜃𝑦

𝜃𝑥
𝛿𝑥�

2
= Var(𝜀𝑀𝑡) 

and 

 ∆𝑌𝑡 = 𝜃𝑦
𝜃𝑥
∆𝑋𝑡 − �1 − 𝜌𝑦′ � �𝑌𝑡−1 −

𝜃𝑦�1−𝜌𝑥′ �
𝜃𝑥�1−𝜌𝑦′ �

𝑋𝑡−1� + 𝜀𝐿𝑡. 

Since a break in the basic linear relationship does not occur (or NSB), S-5 escapes the 

contagion even though there is volatility spillover and the contagion check is “Contained”. In 

this situation, market Y maintains market stability by keeping 𝜃𝑦
𝜃𝑥

 unchanged. 

(S-6) Rejection of 𝛽𝐿0 = 𝜃𝑦
𝜃𝑥

 (short-term) implies a change in 𝜃𝑦
𝜃𝑥

. In this case, acceptance 

of γL = 𝜃𝑦(1−𝜌𝑥)
𝜃𝑥(1−𝜌𝑦)

 (long-term) and rejection of 𝛽𝐿2 = 𝜃𝑦(1−𝜌𝑥)

𝜃𝑥
 (correlatedness) produce some 

required condition for 𝜌𝑦  and 𝜌𝑥 (e.g., 𝜃𝑦
′  �1−𝜌𝑥′ �
𝜃𝑥′�1−𝜌𝑦′ �

= 𝜃𝑦(1−𝜌𝑥)
𝜃𝑥(1−𝜌𝑦)

) although they are allowed to 

vary. Thus, (S-6) follows. Since the statuses of  𝜌𝑥 and 𝜌𝑦 are unknown (i.e., UND) with 

breaks in short-term relationship and correlatedness (or SB and CRB), this case needs a 

further check to conclude contagion, and the contagion check is “Additional check required”. 

Following the definition of the contagion, a contagion occurs if the correlatedness break (or 

break in 𝛽𝐿2 = 𝜃𝑦(1−𝜌𝑥)
𝜃𝑥

) is mainly caused by a change in 𝜃𝑦
𝜃𝑥

  not by the change in (1 −  𝜌𝑥). 

(S-7) Rejection of 𝛽𝐿0 = 𝜃𝑦
𝜃𝑥

 (short-term) and acceptance of 𝛽𝐿2 = 𝜃𝑦(1−𝜌𝑥)
𝜃𝑥

 

(correlatedness) necessarily implies a change in 𝜃𝑦
𝜃𝑥

 and 𝜌𝑥 (or 𝜃𝑦
′

𝜃𝑥′
 and  𝜌𝑥′ ). In this case, 
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rejection of γL = 𝜃𝑦(1−𝜌𝑥)
𝜃𝑥(1−𝜌𝑦)

 (long-term) does not produce any required situation for 𝜌𝑦. Thus, 

S-7 follows. Since the status of market-specific volatility of Y (𝜌𝑦) is unknown (i.e., UND) 

with breaks in short and long-term relationship (or SB and LB), this case needs a further 

check to conclude contagion, and the contagion check is “Additional check required”. 

Following the definition of the contagion, a contagion occurs if the long-term break (or break 

in γL = 𝜃𝑦(1−𝜌𝑥)
𝜃𝑥(1−𝜌𝑦)

) is mainly caused by the change in 𝜃𝑦
𝜃𝑥

  not by the change either in (1 − 𝜌𝑥) 

or �1 − 𝜌𝑦�. 

(S-8) Rejection of 𝛽𝐿0 = 𝜃𝑦
𝜃𝑥

 (short-term) implies a change in 𝜃𝑦
𝜃𝑥

 (or 𝜃𝑦
′

𝜃𝑥′
). It is trivial to see 

that rejection of 𝛽𝐿2 = 𝜃𝑦(1−𝜌𝑥)
𝜃𝑥

 (correlatedness) and rejection of γL = 𝜃𝑦(1−𝜌𝑥)
𝜃𝑥(1−𝜌𝑦)

 (long-term) 

do not produce any required situation for 𝜌𝑦  and 𝜌𝑥. Thus, S-8 follows. Since the statuses of 

 𝜌𝑥 and 𝜌𝑦 are unknown (i.e., UND) with breaks in short- and long-term relationship and 

correlatedness (or SB, LB, and CRB), this case needs a further check to conclude a contagion, 

and the contagion check is “Additional check required”. Following the definition of the 

contagion, a contagion occurs if the long-term break or correlatedness break (or break in 

γL = 𝜃𝑦(1−𝜌𝑥)
𝜃𝑥(1−𝜌𝑦)

 or break in 𝛽𝐿2 = 𝜃𝑦(1−𝜌𝑥)
𝜃𝑥

) is mainly caused by the change in 𝜃𝑦
𝜃𝑥

  not by the 

change either in ( 1 − 𝜌𝑥) or �1 − 𝜌𝑦�. 

 

 

 

 

 

 


