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Abstract 

 

We apply an exploratory spatial data analysis framework for integrating the time series of hedge fund returns to 

its neighborhood, mapping, and local analysis for the feasible spatial modeling. By comparing the classic risk 

factor analysis of hedge fund performance of ordinary least squares regression with spatial autoregressive 

models, we investigate each model’s respective ability to produce fair estimates of risk-premiums per hedge 

fund styles. The time series analysis of hedge fund returns from the Barclays Hedge indicates that, for some of 

the sub-investment styles such as equity long-short, equity long-bias, event-driven arbitrage, convertible 

arbitrage, fixed-income arbitrage, distressed securities, multi-strategies, and commodity trading advisors, the 

spatial autoregressive modeling may provide consistent estimates of factor risk-premiums by correcting spatial 

dependence through the measure of endogeneity of implied volatilities. The spatial specification employed here 

includes spatial lag (SLM) and spatial error (SEM) models and also applied to a relatively short time series of a 

failed credit hedge fund previously marketed its vanishingly rare talent of return predictability and consistency. 

Both SLM and SEM models used to explore some practical implications in an ad hoc screening through the 

missing spatial autoregressive heterogeneity in the ordinary least squares approach. 

 

Keywords: Spatial Dependence, Spatial Lag, Spatial Error, Hedge Fund Performance Attribution 

 

1. Introduction 

 

Many hedge fund strategies exhibit non-linear risk-return payoffs as manifested through significant betas on 

option-based risk factors. Agarwal and Naik (2004) show that some equity-based hedge fund investment styles 

tend to show a relationship with option-based risk factors that consist of returns obtained by buying and selling 

one-month later liquid put and call options on the S&P 500 index. For instance, payoffs of event arbitrage, 

corporate restructuring, event-driven, relative value arbitrage, and convertible arbitrage trades resemble that 

from writing a put option on the equity market index and end up with a typical short-volatility risk-return profile. 

These are trading strategies collecting small but continuous option premiums based on normal economic activity, 

while susceptible to a large loss during the tail-events in the equity market. It may also be from the managers’ 

intentional efforts to calibrate a payoff structure similar to that from writing a put option to improve their Sharpe 

ratios or to assimilate it to their incentive contract. In practice, the standard assumption of normal, 

homoscedastic and uncorrelated error terms that lead to the best linear unbiased estimator (BLUE) 

characteristics of ordinary least squares (OLS) estimators are not necessarily satisfied in the performance 

attribution analysis by the real hedge funds data. Then checking the degree and extent to which these 
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assumptions are violated may be the first step in the analysis of hedge fund returns. Further attention is required 

whenever the errors in the variables in the model show some degree of spatial dependence. 

 

Various works of literature have pointed out that the returns of the hedge funds are serially correlated (i.e., 

autocorrelated) and systematically distorted due to their non-normal nature of return distributions. The fact that 

the hedge funds’ trading strategies adopt nonlinear derivative contracts or may engage in market or factor-timing 

leads to an asymmetric return distribution and the probable fat tails, which is far from Gaussian as the higher 

moments such as skewness and excess kurtosis significantly deviate from zero. A negative skewness and 

positive excess kurtosis (i.e., leptokurtic) are indicative of a higher probability of large losses than stipulated at 

Gaussian return distributions. Since the higher moments of the return distribution are not considered in the 

Sharpe ratio formula, the underestimation of the high tendency of large losses for any qualified hedge fund 

portfolio is also probable. 

 

A positive autocorrelation characterized by a significantly positive beta coefficient in the time series of returns 

on its own lagged value implies that the hedge fund returns exhibit a trend such that a positive (negative) return 

will be followed by another positive (negative) return. Autocorrelation may result from difficulties in the 

periodic valuation of the investment holdings. For any illiquid positions such as private debt or direct lending to 

small and medium-sized companies, the fund manager might attempt to smooth the contemporaneous returns 

concerning the previous months’ records so that an estimation of the market value might be represented by a 

positive first-order autocorrelation. These autocorrelations lead to an underestimation of the return volatilities 

and an overestimation of the Sharpe ratios. While the variance in the hedge fund returns often changes over time, 

the typical phenomena of volatility clustering imply the persistence of volatility so that the volatility shocks this 

month might influence the expectation of volatility many periods in the future. As this requires a non-linear 

specification between returns and volatility, some modeling efforts for estimating the level of returns (e.g., an 

ARMA model) and the volatility modeling (e.g., a GARCH-family) have been combined to capture the level of 

persistence in risk-return profiles. 

 

This article extends the lead taken by Inoue, Shimizu, and Kigoshi (2010) and Selby, Kockelman, and Kara 

(2013) in two dimensions. Inoue et al. (2010) consider spatial distribution and temporal changes in the modeling 

Tokyo residential land prices by using spatio-temporal analysis with universal kriging. The parameters of the 

spatio-temporal covariance function are estimated separately after the initial hedonic land price regressions and 

use the residuals of land price model by weighted least squares criteria. The subsequent estimation of the 

parameters of generalized least squares was conducted by overlaying the estimated covariance structure. The 

stability of estimation might be proved once the parameters converge after the several iterations of the entire 

estimation of the land price model and the spatio-temporal covariance functions. Since the algorithms are based 

on asymptotic, the model performance in small data sets may be suspect. Selby et al. (2013) consider two 

algorithms of universal kriging and geographically weighted regression in their spatial prediction of traffic 

levels in Texas regions that can be defined as “local”, because spatially neighboring traffic data are used to 

calculate the traffics in unmeasured locations.  

 

Firstly, we broaden the scope of the paper by considering both nuisance and substantive spatial dependence in 

hedge fund returns. There is considerable evidence from behavioral finance that implied volatilities are 

clustering with asymmetrical in upside and downside potentials. Nuisance here refers to model residuals from 

the motivation to correct the effect of spatial dependence of hedge fund returns through the adjustments that 

incorporate the spatial autocorrelation in an error-term of the factor-risk models. Secondly, the time series of 

hedge fund returns are closely related to the risk-return profile of the market; thus, it is challenging but equally 

doable that the pricing model can be constructed based on this ‘geographical’ market return-risk framework. 

Since most information on monthly hedge fund returns is in the form of point data and not an area data, we 
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established a process for the creation of a market risk-return grid
1
 of the Cartesian coordinates of (𝒙𝒊,𝒚𝒋). This 

process involves an intrinsically symmetric weights matrix 𝑾 derived from the queen contiguity for the 

Thiessen polygon tessellations constructed on the observed point representations of the hedge fund returns on 

the Cartesian coordinates of Eastings and Northings, e.g., equity market index and the index of implied 

volatilities. Following our initial expectation, including explicit spatial terms of both endogenous and 

instrumental variable (𝑰𝑽) to the right-hand side of the model specifications might allow the consistent 

estimation vs. non-spatial OLS approach. Any substantive autocorrelation in returns may cause model bias, 

which might be due to the spatial dependencies through lagging or from the error terms with all the included 

covariates. A typical inconsistency observed in OLS estimates is due to the multidirectional dependency in the 

spatial data, which makes the important distinction between spatial autocorrelation and autocorrelation observed 

from the financial time-series. Our analytical methodology attempts to overcome the difficulties of analyzing 

financial time series data by introducing nuisance and substantive spatial dependence parameters in the model 

specifications. This type of spatial autocorrelation might be considered as substantive in the form of the spatial 

dependence from the nature of spatial spillover with associated economic processes behind it. Meanwhile, the 

rows of the neighborhood matrix 𝑾 sum to 1, which means that 𝑾 is always row-standardized. 

 

While the purpose of this study is to apply the exploratory spatial data analysis (ESDA) methodologies to the 

performance attribution analysis of hedge fund returns and subsequent application to the feasible a priori spatial 

detection of any clues of irregularity in its return generation process, comparative analysis with the widely 

adopted framework of performance measures such as those from Getmansky, Lo, and Makarov (2004) is 

temporarily outside the scope of this article. The paper proceeds as follows. Section 2 models to measure the 

impact of spatial nuisance and substantive characteristics. Section 3 presents the empirical methodology in our 

spatial lag and error models applied to the Barclays Hedge Fund Indices. In Section 4, discusses an ad hoc case 

experimentation to a recently failed credit hedge fund for possible qualitative application of the irregularity 

detection through spatial specifications. Section 5 concludes.  

 

 

2. Spatial Lag and Spatial Error Models 

 

A large number of OLS diagnostics assume normal error distributions. Because it is hard to assess the extent to 

which this may be violated with the unobservable errors, the regression residuals are adopted for testing the 

degree of non-normal errors. For instance, a low probability of the Jarque-Bera test indicates a rejection of the 

null hypothesis of error normality. However, the subsequent tests for heteroscedasticity and spatial dependence 

should be interpreted with rigors, as they are also subject to the same normality principle. OLS can be used for 

modeling hedge fund returns as the model is represented using matrix notation in Eq. 1.1 and the estimated 𝜷 

coefficients in Eq. 1.2. 

 

𝒚 =  𝑿𝜷 +  𝜺, 𝜺 ~ 𝑵(𝟎, 𝝈𝟐𝑰)  (Eq. 1.1) 

𝜷 = (𝑿′𝑿)−𝟏𝑿′𝒚    (Eq. 1.2) 

 

                                                                    
1 This is an imaginary Cartesian coordinates of (𝒙𝒊,𝒚𝒋) with the natural logarithm of the S&P 500 index as x-coordinate 

similar to Eastings and the natural logarithm of the implied volatility (VIX) index as y-coordinate similar to Northings to see 

whether the various hedge fund returns are systematically related to their own returns in the adjacent distances in this 

Cartesian equity market-implied volatility map as shown in the second and third panels of Exhibit 1 and 2 in Section 3. 



4 

 

where 𝒚 is an (N×1) vector of observed monthly log-returns of hedge fund index; 𝑿 is an (N×K) vector of 

factor-risk premiums; 𝜷 is a (K×1) vector of estimated coefficients, and 𝜺  is an (N×1) assumed-to-be 

independent error vector as the net effect of all the other factors affecting hedge fund returns but omitted from 

this classic specification. An OLS-based factor-risk model is served as the benchmark against which the 

subsequent spatial econometric models to be evaluated.  

 

Spatial dependence is the situation where the hedge fund returns (or the error terms) at each location in the 

Cartesian coordinates of the market index and the implied volatilities (𝒙𝒊,𝒚𝒋) is correlated with the returns (or 

values for the error terms) at other locations. Global spatial models address spatial dependence or 

autocorrelation in the spatial processes. For example, Anselin (1988) assumes spatial autocorrelation is in either 

the response variable or the error terms, and the corresponding models are usually calibrated by maximum 

likelihood (ML) rather than the OLS technique as some OLS assumptions (e.g. independently and identically 

distributed residuals) are violated. One potential intuition is that the financial market participants could 

anticipate similar returns in a previously observed neighborhood of the market risk-return framework with the 

reference of determining contemporaneous risky asset returns due to the uncertainties in the neighborhood 

characteristics of risk premiums. Thus, it might be the expectation of the “déjà vu” value of returns near to the 

particular Cartesian locations of the levels of the market and implied volatilities. 

 

The presence of spatial autocorrelation in the time series of hedge fund returns can be determined by estimating 

the global Moran’s 𝑰 test for residuals as in Eq.2, where 𝜺 denotes a residual vector, 𝑾 is an exogenous 

spatial weights matrix, 𝑵 is the number of observations, and 𝑺 is a standardized factor defined as the sum of 

all elements in the given weights matrix. If the statistic is significant then the null hypothesis of no spatial 

autocorrelation is rejected and the return process of hedge funds imposes spatial autocorrelation.  

 

𝑰 = [𝑵/𝑺]{[𝜺′𝑾𝜺]/𝜺′𝜺}  (Eq. 2) 

 

The test statistics of spatial autocorrelation is based on independence assumptions, which may result in biased 

inferences: Under the influences of spatial errors, OLS estimates become inefficient. Under the spatial 

autoregressive effects, OLS estimates are biased and thus result in incorrect inferences. The random regression 

error process might be heteroscedastic when it does not have a constant variance over all observations which 

results in unbiased but inefficient OLS estimates. Any inference based on the usual t- and F-statistics will be 

misleading as well, and the 𝑹𝟐 measure of the goodness-of-fit will be spurious. In the analysis of hedge fund 

return attributions, this might be observed when there are systematic regional differences in the relationships 

with volatilities (i.e., spatial regimes of risk-on and off), or when there is a continuous spatial drift in the 

parameters (i.e., spatial expansion and clustering). The presence of any of these spatial effects would make an 

OLS misspecified. Whenever both heteroscedasticity and spatial dependence may be present in the data process, 

the heteroscedasticity tests tend to be highly sensitive to the presence of spatial dependence (Anselin and Rey, 

2014). Therefore, any test indicative of heteroscedasticity may also come from the presence of spatial 

dependence (or the other way around).  

 

When spatial autocorrelation such that the spatial lag term contains the effects to the fund returns from the 

previously watched neighboring observations, which in turn may contain the spatial lag for their neighbors’ 

neighbors, leading to the issue of simultaneity. This simultaneity mostly results in a nonzero correlation between 

the spatial lag and the error term, which violates an assumption of independence between them. Then, the OLS 

estimation will be inconsistent and biased due to the dependence of error term and all the included covariates 

and any subsequent inference will be flawed again. Instead of OLS, specialized estimation methods that 
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properly accounting for the spatial simultaneity in the model are necessary. These methods are either based on 

the generalized method of moment principle or the application of instrumental variable (𝑰𝑽) estimations in a 

Spatial Two-Stage Least Squares (S2SLS) or both. 

 

The spatial error model (SEM) is designed to capture the influence of unmeasured exogenous risk factor 

premiums since the spatial clustering of the hedge fund returns is manifested through the error term 𝜺, thus not 

explained by the measured covariates of explanatory risk premiums. SEM contains the a priori pivotal spatial 

variable in the right-hand side (RHS) of the model with subtle spatial features to the regression residuals and the 

error may follow a spatial autoregressive specification as in Eq. 3.1.  

 

𝑬(𝒚) =  𝑿𝜷 +  𝒖, 𝒖 =  𝝀𝑾𝒖 +  𝜺, 𝜺 ~ 𝑵(𝟎, 𝝈𝟐𝑰)  (Eq. 3.1) 

𝑬[𝜺𝜺′] = 𝝈𝟐[(𝑰 − 𝝀𝑾)−𝟏((𝑰 − 𝝀𝑾)−𝟏)′]  (Eq. 3.2) 

 

where 𝒚 is an (N×1) vector of observations on the hedge fund returns; 𝑿 is an (N×K) matrix of observations 

on the explanatory risk factor premiums; 𝜷 is a (K×1) vector of regression coefficients; 𝒖 in an (N×1) vector 

of spatially autocorrelated error terms; 𝑾 is the weights matrix; 𝑾𝒖 is a spatial lag for the errors; 𝝀 is the 

spatial autoregressive coefficient; and 𝜺 as a vector of idiosyncratic errors. Then, 𝝀𝑾𝒖 captures the spatial 

autocorrelation between the neighboring error terms 𝒖. Since an ideal spatial error model implies no distinctive 

effects of the neighboring dependent variable, the idiosyncratic errors should be heteroscedastic 𝑬[𝜺𝒊
𝟐] =  𝝈𝒊

𝟐, 

but uncorrelated 𝑬[𝜺𝒊𝜺𝒋] =  𝟎. The observed spatial clustering in the hedge fund returns might be accounted for 

by the spatial patterning of measured and unmeasured exogenous factor risk premiums. Eq. 3.2 shows the 

variance-covariance matrix which tends to be heteroscedastic as well. Therefore, the expected hedge fund 

returns 𝑬(𝒚) for each Cartesian coordinates (𝒙𝒊,𝒚𝒋) are affected by the stochastic errors at all other nearby 

returns through the spatial multiplier (𝑰 − 𝝀𝑾)−𝟏. The value of |𝝀| implies the magnitude of spatial multiplier 

effects. 

 

By incorporating the influence of unmeasured exogenous risk factor premiums for stipulating an additional 

effect of neighboring attribute values, the spatial lag model (SLM) in Eq. 4 accounts for the potentially 

confounding effect of spatial autocorrelation in the hedge fund returns. Then insignificant spatial dependence 

would remain in the residuals of our factor risk premium models. As Anselin and Rey (2014) proposed a 

decision-making process for selecting an appropriate analysis of spatial dependence, the Lagrange Multiplier 

(LM) test for spatial error autocorrelation in the SLM is a useful diagnostic for this. 

 

𝑬(𝒚) =  𝝆𝑾𝒚 + 𝑿𝜷 +  𝒖 =  (𝑰 − 𝝆𝑾)−𝟏𝑿𝜷 + (𝑰 − 𝝆𝑾)−𝟏𝒖, 𝒖 ~ 𝑵(𝟎, 𝝈𝟐𝑰)  (Eq. 4) 

 

where 𝑾 as an (N×N) exogenous weights matrix that specifies the assumed spatial structure or connections 

between the observed fund returns, and 𝑾𝒚 is an (N×1) vector of neighboring hedge fund returns accounting 

for spatial dependencies. The scalar parameter 𝝆 is a spatial autoregressive coefficient indicating the effect of 

the hedge fund returns in the neighboring previously observed hedge fund returns in the Cartesian coordinates of 

the market and implied volatilities (𝒙𝒊,𝒚𝒋). 𝑿𝜷  is an (N×K) matrix of observations on the exogenous 

explanatory risk factor premiums multiplied by a (K×1) vector of regression coefficients 𝜷 for each 𝑿, and 𝒖 

is an (N×1) vector of normally distributed random error and might be decomposable into a spatially lagged term 

𝝆𝑾𝒚 of the weighted average of neighboring values 𝒚 and an idiosyncratic error term 𝜺. The strength of the 
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spatial dependence among the historical hedge fund returns 𝝆𝑾𝒚 is correlated with the expectations of 

contemporaneous hedge fund returns 𝑬(𝒚).  

 

While the inclusion of 𝑾𝒚 allows assessing the significance of the residual non-spatial variables, the presence 

of a spatial lag term is mathematically equivalent to the existence of endogenous variables on the RHS in 

simultaneous equation systems. As these two (𝑰 − 𝝆𝑾)−𝟏 terms in Eq. 4 are called spatial multipliers (Anselin 

and Rey, 2014), the expected monthly returns of a hedge fund at one location (𝒙𝒊,𝒚𝒋) depend on the value of all 

the nearby Cartesian coordinates (𝒙𝒋,𝒚𝒋) in this model. Cartesian coordinates here mean a polygon structure as 

we have constructed asymmetric Thiessen polygon tessellations from the point representations of the historical 

hedge fund returns and derived a first-order queen contiguity weights matrix 𝑾 from the center of these 

polygons. The rows of the neighborhood weights matrix 𝑾 are row-standardized and always sum to 1. Since 

𝜷 as the vector of marginal implicit sensitivities to hedge fund returns in a traditional factor risk model, 

(𝑰 − 𝝆𝑾)−𝟏𝜷 implies that the spatial marginal sensitivities to risk premiums will be smaller than traditional 

performance attribution analysis when |𝝆| < 𝟏. Therefore, the expected marginal effect on hedge fund returns 

consists of both a direct effect due to the change in the contemporaneous risk premiums as well as the induced 

effects due to marginal changes related to neighboring historical fund returns. These induced effects imply that 

any serious expectation of contemporaneous hedge fund returns is restricted primarily from the historical 

observations experienced by the neighboring returns at the nearby Cartesian coordinates (𝒙𝒋,𝒚𝒋).  

 

By substituting the reduced form 𝒖 =  (𝑰 − 𝝀𝑾)−𝟏𝜺 into the SLM results in a spatial lag component with an 

error variance-covariance (𝑰 − 𝝀𝑾)−𝟏𝚺(𝑰 − 𝝀𝑾′)−𝟏. 

 

𝒚 =  𝝆𝑾𝒚 + 𝑿𝜷 +  (𝑰 − 𝝀𝑾)−𝟏𝜺  (Eq. 5.1) 

 

The main complication is the existence of endogenous spatially lagged hedge fund returns 𝑾𝒚 on the RHS of 

the equation. After rearranging the terms as in Eq. 5.2, the first and second-order spatially lagged hedge fund 

returns show up on the RHS together with a non-spatially correlated error term as in Eq. 5.3.  

 

(𝑰 − 𝝀𝑾)(𝑰 − 𝝆𝑾)𝒚 = (𝑰 − 𝝀𝑾)𝑿𝜷 +  𝜺  (Eq. 5.2) 

𝒚 = (𝝀 + 𝝆)𝑾𝒚 − 𝝀𝝆𝑾𝟐𝒚 + 𝑿𝜷 − 𝝀𝑾𝑿𝜷 +  𝜺  (Eq. 5.3) 

 

While the presence of 𝝀 + 𝝆 and 𝝀𝝆 terms in the same equation would make these coefficients unidentifiable, 

additional information in 𝝀𝑾𝑿𝜷 and by dividing the estimate for 𝝀𝜷 by the matching value of estimated 𝜷̂, a 

non-unique estimate for 𝝀 and 𝝆 might be obtained
2
.  

 

                                                                    
2 Anselin and Rey (2014) explains that as the constant term provides an estimate for the product (𝑰 − 𝝀)𝜷𝟎, the estimated 

𝜷𝟎̂ can be obtained by means of an estimated 𝝀̂. In addition, the same spatial weights matrix 𝑾 in the lag and error 

specifications in actual calibration was adopted since assuming two different spatial weights for the lag and error processes 

in the same hedge fund returns doesn’t make a lot of sense. 
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With the generalized S2SLS estimator for 𝝆̂ and the Generalized Method of Moments (GMM) estimator for 𝝀̂ 

and pre-multiplying both sides of the spatial filter expression by the inverse matrix (𝑰 − 𝝆𝑾)−𝟏 yields Eq. 6. 

 

𝒚 =  (𝑰 − 𝝆𝑾)−𝟏𝑿𝜷 + (𝑰 − 𝝆𝑾)−𝟏(𝑰 − 𝝀𝑾)−𝟏𝜺 (Eq. 6) 

 

Since 𝑬[𝜺] = 𝟎, the variance-covariance matrix for the error term no longer imposes a complexity. Eq. 5.1 

might be generalized
3
 with an additional set of endogenous explanatory variables 𝒀 with associated coefficient 

vector 𝜸: 

 

𝒚 =  𝝆𝑾𝒚 + 𝑿𝜷 +  𝒀𝜸 + (𝑰 − 𝝀𝑾)−𝟏𝜺 (Eq. 7) 

 

 

3. Application to the Barclays Hedge Fund Index 

 

Due to the parameter uncertainty, the usual factor risk models do not immediately applicable to the analysis of 

single hedge funds. The stability of parameters also depends on the length of single managers’ track records. The 

choice of the proxies for average hedge fund returns in this study is one of the practitioners’ standard Barclays 

Hedge Fund Index (BHFI)
4
 and its eighteen sub-indices. We first divide eighteen sub-indices into equity- and 

arbitrage-focused strategies to examine whether the investment style differences are related to the magnitude of 

spatial dependencies in hedge fund performance. While equity strategies such as equity long-short (ELS), equity 

long bias (ELB), Pacific Rim equity (PREQ), and technology equities (Tech) are screened, arbitrage strategies 

such as event-driven (AED), convertible arbitrage (ACNV), fixed income (AFI), distressed securities (Dist), 

multi-strategies (MS), BTOP50, and the Barclays CTA (CTA) are screened out of the sub-index pools.  

 

Global Moran’s 𝑰 test was conducted first to verify whether there was a spatial dependence as presented in 

Exhibit 1 and 2 using monthly hedge fund returns data from January 2003 to December 2018
5
. The first panels 

                                                                    
3 Kelejian and Prucha (1998) explains how a consistent estimator for the spatial autoregressive coefficient 𝝆 and the 

parameter 𝝀 can be obtained by 2SLS specification. Their algorithms were further generalized to cover the 

heteroscedasticity in the error term by Kelejian and Prucha (2010) and Drukker et al. (2013). 

4 “Certain biases do inflate performance while others may skew index performance downwards. The Barclays Hedge Fund 

Indices may only be able to provide some biased snapshot of the ‘true’ hedge fund universe, they are not including defunct 

funds, thus do not account for the survivorship bias. Furthermore, these indices didn’t explicitly account for the backfill and 

the incubation biases that arise due to the voluntary nature of self-reporting in hedge fund databases.” Cho, J.K. and Kim, 

G.W. “Making a Bet at a Right Time: Style and Volatility Timing Abilities of Korean Equity Hedge Funds.” Asset 

Management Review, Vol. 5, Issue 2, December 2017 

5 The data coverage encompasses the periods of sporadic market stress triggered by the U.S. sub-prime mortgage crisis, the 

fiscal crisis in the periphery Eurozone, the Chinese deceleration in the summer of 2015, unfounded fears of recession in the 

U.S. in January 2016, the Brexit referendum in June 2016, and the implosion of the volatility market in February 2018 until 

the sudden recessionary concerns at the end of 2018, offering relatively long data samples for a robust analysis of hedge fund 

returns. 
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in Exhibit 1 and 2 show the Moran Scatter Plot together with the calculated Moran’s 𝑰 values. Moran Scatter 

Plot shows the horizontal axis in the normalized contemporaneous and neighboring hedge fund returns. The first 

and third quadrants represent areas of values with positive correlations (both high-high and low-low) and the 

remaining quadrants represent areas in negative correlation. For example, the monthly returns of the BHFI index 

show Moran’s 𝑰 of 0.379 (𝒑 < 0.01) between the contemporaneous index returns and the neighboring (thus 

spatially lagged) returns. Moran’s 𝑰 statistic was further estimated to 0.341 (ELS), 0.387 (ELB), 0.352 (PREQ), 

0.238 (Tech), 0.381 (AED), 0.325 (ACNV), 0.271 (AFI), 0.48 (Dist), 0.344 (MS), 0.117 (BTOP50), and 0.107 

(CTA), which suggest the presence of spatial autocorrelation in the monthly equity- and arbitrage-focused 

strategy returns.  

 

The Local Indicators of Spatial Association (LISA) significance maps in the third panels of Exhibit 1 and 2 

show the locations of polygon tessellations with a significant local statistic. The spatially heterogeneous degree 

of significance is reflected in the increasingly darker shades of green. The map starts with 𝒑 < 0.05 and shows 

all the categories of significance that are meaningful for the given number of permutations. Since there were 999 

permutations in Exhibit 1 and 2, the smallest 𝒑-value is 0.001, with the darkest shade of green locations. 

 

Exhibit 1. Moran’s 𝑰, LISA Cluster & Significance Maps, and 3D Return Plots – Equity Strategies 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The second panels of Exhibit 1 and 2 show the cluster map of selected equity- and arbitrage-focused strategies 

which augments the significant locations with an indication of the type of spatial association, based on the 

location of the value and its spatial lag in the Moran scatter plot in four categories; dark red for the high-high 

clusters, dark blue for the low-low clusters, light blue for the low-high spatial outliers, and light red for the high-

low spatial outliers. For instance, the ACNV index in Exhibit 2 shows positive high-high (red) and low-low 

(blue) areas in both lower and upper quadrants at the second panel between the reverse 45-degree line. The 
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represented red and blue area of ACNV is comparable to those of BHFI where the area of red (high-high) is 

smaller, while the area of blue is much larger in BHFI. While the positive correlation of high-high area implies 

the locations with high hedge fund returns at a high level of similarity with its neighboring observed historical 

returns (Hot Spot), the low-low area implies the locations with low hedge fund returns at a high level of 

similarity with its neighboring historical returns (Cold Spot). Therefore, for the hedge fund indices such as 

BHFI, ELB, Tech, AED, ACNV, AFI, Dist, and MS, the Hot Spot can be expected when the equity market index 

level is relatively low and the implied volatility index is relatively high.  

 

Exhibit 2. Moran’s 𝑰, LISA Cluster & Significance Maps, and 3D Return Plots – Arbitrage Strategies 

 

 

 

 

 

 

 

 

 

 

 

 

The second (fourth) quadrant represents the locations of spatial outliers with high (low) hedge fund returns and 

low (high) level of similarity with its surroundings thus high-low (low-high). CTA distinguishes itself from all 

other strategies as it is known as trend-following, long-volatility trades. Moran’s 𝑰 statistics are relatively lower 

than others for both BTOP50 and CTA at 0.117 and 0.107, respectively.  

 

Exhibit 3. Moran’s 𝑰, LISA Cluster & Significance Maps, and 3D Return Plots – Vol & Option Traders 
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Even though we initially classified the strategies of Barclays Hedge Funds into equity- and arbitrage-focused, 

we would doubt the practical benefits out of the portfolios of hedge fund strategies since most of the equity and 

arbitrage-focused strategies show very similar LISA clustering patterns. In that sense, BTOP50 and CTA might 

be more relevant in the argument in favor of hedge fund portfolio diversifications. The last panels of Exhibit 1 

and 2 show 3-dimensional scatter plots with the monthly log-returns of the S&P 500 index in the X-axis, the 

monthly log-returns of VIX in the Y-axis, and the monthly hedge fund returns in the Z-axis. Moran’s 𝑰 statistic 

does not provide a meaningful implication in portfolio diversification as we can see in Exhibit 3 of Barclays 

Volatility and Option Trading strategies. While the Moran’s 𝑰 statistic is quite low at 0.097 for Vol Trading and 

0.070 for Options Trading indices, the major distribution of the Hot and the Cold Spots are quite similar to each 

other but with those of equity and arbitrage strategies with fewer implications for these short volatility trades to 

the potential diversification benefits. 

 

Global factor definitions are consistent with a global market for risk, where hedge funds operate. With Fama and 

French [2012]’s six global equity risk factors
6
 such as market excess returns (xMKT), size (SMB), value 

(HML), quality (RMW), conservativeness (CMA), and the momentum (WML) premiums, five primitive trend-

following strategies (PTFS) look-back straddle returns of bond (PTFSBD); currency (PTFSFX); commodity 

(PTFSCOM); short-term interest rate futures (PTFSIR); and stock index (PTFSSTK) proposed by Fung and 

Hsieh [2001]
7
 were incorporated together with the VIX

8
 for its endogeneity character. As some of the factors 

didn’t come up with the explicitly definable returns, not all of the risk factors offer valid return premiums. 

Meanwhile, identifying the significance of factor-conditioned alpha based on various risk factor models per 

hedge fund style is not the major focus of this paper.  

 

Evaluating the relative performance of models begins with a comparison of parameter estimates for the OLS and 

spatial autoregressive models. Based on these empirical backgrounds, we now demonstrate the performance of 

equity hedge funds by OLS, SLM, and SEM in Exhibit 4 and the performance of arbitrage hedge funds in 

Exhibit 5 with the regression of excess monthly hedge fund returns against eleven risk factor premiums 

elaborated at Eq. 1.1 (OLS), Eq. 3.1 (SEM), and Eq. 4 (SLM). 

 

To quantify the degree of linkage between the neighboring polygon tessellations of historical returns, the 

neighborhood structure is to be converted by a weight matrix chosen. In our case, the results are reported using 

the row standardized way with the implication of allocating more weights to the residuals with relatively fewer 

neighboring observations of historical hedge fund returns. We follow the normality approach in estimating 

Moran’s 𝑰 in Exhibit 4 and 5. Except for BHFI, ELB, and BTOP50 indices, the test statistics of 9 hedge fund 

indices show that the null hypothesis of no spatial effects has to be rejected at 𝒑 < 0.05. While these results are 

qualitatively insensitive to the neighboring structure and weights style (Anselin and Rey, 2014), Moran’s 𝑰 

statistics of regression residuals are calculated as 0.149 (ELS), 0.172 (PREQ), 0.119 (AED), 0.19 (ACNV), 0.11 

(AFI), 0.13 (Dist), 0.159 (MS), and 0.119 (CTA) and are significant at 𝒑 < 0.01. In other words, Moran’s 𝑰 

reject the null hypothesis of no spatial autocorrelation between the regression residuals of the OLS model. It 

suggested that a conventional OLS model might not be appropriate; therefore, alternative modeling should be 

considered. 

 

                                                                    
6 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html 

7 http://faculty.fuqua.duke.edu/~dah7/DataLibrary/TF-Fac.xls. 

8 VIX White Paper, www.cboe.com/micro/vix/vixwhite.pdf 
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Exhibit 4. Results of Estimating Equity Hedge Fund Returns by OLS and Spatial Error & Lag Models 

 

 

 

 

 

 

 

 

 

 

 

 

 

Since the existence of spatial autocorrelation in the monthly hedge fund returns and 𝜺 may justify the use of 

spatial autoregressive models to control for any potential estimation bias in the OLS coefficients, the 

significance of the lag parameters 𝝆 and 𝝀 in the SLM and SEM models is indicative of the extent that the 

spatial autocorrelation effect in the hedge fund returns and the errors 𝜺  have been controlled for. An 

examination of the coefficients is supposed to indicate whether the use of the spatial lag term 𝝆𝑾𝒚 in the SLM 

is effective in reducing the bias in the OLS coefficients. Consequently, (𝑰 − 𝝆𝑾)−𝟏𝑿𝜷 term from Eq. 4 

suggests that the estimated significant coefficients in the SLM (SEM) should be smaller in their magnitude 

when compared to the OLS counterparts when |𝝆| < 𝟏. In the presence of strong spatial autocorrelation, likely, 

the spatial regression model will significantly outperform the OLS counterpart, which is the case as shown in 

Exhibit 4 and 5.  

 

When the Moran’s 𝑰 test rejects the null hypothesis of no spatial dependence, the Lagrange Multiplier (LM) 

tests for spatial effects mostly suggest in favor of SLM rather than SEM, which implies the major effect of the 

misspecification may pertain to spatial autocorrelation rather than heteroscedasticity. While the LM-Lag statistic 

tests the null hypothesis of no spatial autocorrelation in the hedge fund returns, the LM-Error statistic tests the 

null hypothesis of no spatial error autocorrelation. In Exhibit 4 and 5, the LM-Lag test statistic was found to be 

significant at a 5% or above significance level with BHFI, ELB, AED, ACNV, AFI, Dist, MS, BTOP50, and 

CTA indices. The LM-Error test statistic was found to be significant at a 5% or above significance level with 

ELS and Tech. For PREQ, both test statistics of LM-Error and LM-Lag were equally significant. The LM-test is 

asymptotically distributed as 𝝌𝟐(𝟏) and indicates the existence of spatial autocorrelation in the residuals in 

most of the equity- and arbitrage-focused hedge fund strategies. Since the spatial lag parameters are positive and 

significant, the result from the SLM indicates that spatial autocorrelation in hedge fund returns exists for those 

historical returns located very close to each other. The persistence of volatility might be a feasible description 

since the volatility shocks in the previous month might influence the expectations of volatility in many periods 

thereafter. Both spatial models perform better than the OLS counterpart in the improvement of goodness-of-fit 

(𝑹𝟐), higher log-likelihood statistic (Log-Like), and the lower AIC measures.  

 

Variable OLS SLM OLS SEM OLS SLM OLS SLM SEM OLS SEM

Intercept 0.0008 0.0007 0.0017*** 0.0019** 0.0007 0.0007 0.0014 0.0011 0.0016 0.0043*** 0.0045***

xMKT 0.3341*** 0.3217*** 0.2611*** 0.2521*** 0.5508*** 0.5299*** 0.3229*** 0.2979*** 0.3112*** 0.3902*** 0.3902***

SMB 0.2068*** 0.1998*** 0.1356*** 0.1197** 0.2765*** 0.2663*** 0.1859** 0.1696** 0.169** 0.1196 0.1044

HML 0.0542 0.0507 0.0000 0.0055 -0.0229 -0.0268 0.0528 0.0649 0.1056 -0.2594*** -0.2450***

RMW -0.0190 -0.0193 -0.1395** -0.1575*** -0.1895** -0.1884** -0.1651 -0.1524 -0.139 -0.2681** -0.2819**

CMA -0.2644*** -0.2614*** -0.1638*** -0.2095*** -0.2125*** -0.2118*** -0.1285 -0.1342 -0.1739* -0.3533*** -0.4061***

WML 0.0417** 0.0398** 0.0759*** 0.0728*** 0.0524** 0.0470** 0.0709* 0.0695** 0.0859** 0.1377*** 0.1414***

PTFSBD -0.0067* -0.0051 -0.0059 -0.0060* -0.0092* -0.0067 -0.0084 -0.0043 -0.0066 -0.0157* -0.0159**

PTFSFX 0.0048 0.0045 0.0055 0.0069** 0.0082* 0.0079** 0.0038 0.0032 0.0047 0.0192*** 0.0182***

PTFSCOM -0.0083** -0.0077** -0.0091** -0.0086** -0.0101* -0.0098** -0.0056 -0.0053 -0.0067 -0.0091 -0.0088

PTFSIR -0.0026 -0.0024 0.0012 0.0019 -0.0012 -0.0004 0.0013 0.0016 0.0007 0.0109* 0.0122**

PTFSSTK -0.0009 0.001 0.0042 0.0042 0.0019 0.0048 -0.0012 0.0087* -0.0003 0.003 0.0057

Lambda (λ) 0.4050*** 0.3817*** 0.3028**

Rho (ρ) 0.1207** 0.1274*** 0.2578***

Moran's I 0.079* 0.149*** 0.071* 0.1719*** 0.1218***

Adj-R
2 0.92 0.93 0.84 0.867 0.932 0.941 0.659 0.713 0.718 0.728 0.764

Log-Like 506.2 509.14 497.32 501.71 460.66 464.69 403.05 407.65 407.71 401.06 403.61

AIC -988.4 -992.29 -970.63 -979.42 -897.32 -903.38 -782.1 -789.3 -791.41 -778.11 -783.22

JB (d.f. 2) 11.17*** 1.4491 16.63*** 16.34*** 1.76

B.P. (d.f. 11) 36.93*** 44.80*** 39.73*** 22.16** 22.69** 27.44*** 37.61*** 29.90*** 31.98*** 7.43 5.17

K.B. (d.f. 11) 21.74** 32.35*** 13.65 22.79** 9.88

L.M.-Error 7.92*** 10.49*** 5.27**

L.M.-Lag 6.12** 8.63*** 10.71***

L.R. (d.f. 1) 5.89** 8.78*** 8.06*** 9.20*** 9.31*** 5.107**

Note: * p < 0.10, ** p < 0.05, *** p < 0.01

Barc Hedge Indx (BHFI) Pacific Rim Ety (PREQ)Equity Long-Bias (ELB)Equity Long-Short (ELS) Technology Eqty (Tech)
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The studentized Breusch-Pagan (B.P.) tests for OLS reported in Exhibit 4 and 5 show that the present of 

heteroscedasticity: The values for the B.P. test are 36.93 (BHFI), 39.73 (ELS), 22.69 (ELB), 37.61 (PREQ), 

21.59 (AED), 187.24 (ACNV), 307.61 (AFI), 27.43 (Dist), and 131.92 (MS), while the values for Koenker-

Bassett (K.B.) test are 21.74 (BHFI), 32.35 (ELS), 22.79 (PREQ), 53.87 (ACNV), 63.04 (AFI), and 43.41 (MS). 

These are highly significant for a 𝝌𝟐 variate with 11 degrees of freedom, strongly indicating the presence of 

heteroscedasticity. This may be problematic because the derivation of the maximum likelihood (ML) estimate 

assumes a constant error variance, which suggests the spatial two-stage least squares (S2SLS) model might be 

more appropriate. No evidence of significance in both statistics was detected at Tech, BTOP50, and CTA indices. 

Furthermore, the large difference between B.P. and K.B. test statistic also confirms potential error non-normality, 

since, under the Gaussian, the value for both should roughly be the same (Anselin and Rey, 2014). 

 

Exhibit 5. Results of Estimating Arbitrage Hedge Fund Returns by OLS and Spatial Error & Lag Models 

 

 

 

 

 

 

 

 

 

 

The ones in the bottom are the regression coefficients coming with asymptotic standard error from the analytical 

computation of the asymptotic variance and an asymptotic 𝒕-test with its 𝒑-value. We also get the likelihood 

ratio (L.R.) test on the spatial parameter. This is a test on the null hypothesis that (𝝆 or 𝝀) = 0 and the values of 

5.89 (BHFI), 8.78 (ELS), 8.06 (ELB), 9.20/9.31 (PREQ), 5.11 (Tech), 8.89 (AED), 20.82 (ACNV), 10.08 (AFI), 

25.23 (Dist), 13.43 (MS), 5.19 (BTOP50), and 7.47 (CTA) are highly significant for a 𝝌𝟐 variate with 11 

degrees of freedom, strongly indicating the presence of remaining spatial dependence. Since this test is based on 

the ML estimation results, it may also be susceptible to the presence of heteroscedasticity. 

 

When compared to the coefficients of the explanatory variables of the OLS model, the absolute values of the 

equivalents of the SLM and SEM were on the decline. Rho (𝝆) as a spatial multiplier reveals the indirect or 

external effects of spatial interaction among the monthly hedge fund returns on each other. This could be 

described as the spatial spillover suggesting that, for instance, the monthly ACNV returns were positively 

influenced by those of the adjacent previous months’ returns at an average of 47.02%, when other covariates 

were controlled for. An average of a 0.215% increase in the strategy returns would be observed if the size 

premiums were increased by 1%, all else being equal, which is smaller than 0.283% estimated by OLS. The 

straddle returns of short-term interest rate futures (PTFSIR) had a negative impact (-0.018%) on the returns of 

ACNV at a 5% significance level. This suggests that the premium of PTFSIR has a diminishing marginal impact 

on the ACNV returns despite the claims of these convertible arbitrage managers for their portfolio hedging 

practice to the fluctuations of short-term interest rates. Conservativeness premiums (CMA) had also a negative 

effect on the strategy returns, suggesting that a strategy returns would be lower by 0.445% every month if the 

Variable OLS SLM OLS SLM OLS SLM OLS SLM OLS SLM OLS SLM OLS SLM

Intercept 0.0022*** 0.0019** 0.002 0.0007 0.0008 0 0.0007 0.0006 0.0012 0.0006 0.0000 0.0000 0.0007 0.0006

xMKT 0.2707*** 0.2484*** 0.1485*** 0.1069*** 0.099*** 0.0657** 0.2468*** 0.1692*** 0.1687*** 0.1453*** 0.1326*** 0.1341*** 0.1334*** 0.1341***

SMB 0.2477*** 0.2400*** 0.2833*** 0.2148*** 0.1792** 0.1573** 0.2215** 0.1826** 0.2199*** 0.1938*** -0.0982 -0.1048 -0.0027 -0.006

HML 0.0702 0.0657 0.1698 0.1550* 0.1345 0.097 0.2732** 0.2257** 0.0462 0.0305 -0.0555 -0.0447 -0.0104 -0.0015

RMW -0.0551 -0.0582 0.0863 0.034 0.08 0.0647 -0.099 -0.1246 0.0500 0.0329 0.3281* 0.3147** 0.2134* 0.2044*

CMA -0.2247*** -0.2214*** 0.4650*** -0.4451*** -0.2541** -0.2545** -0.3271** -0.3244*** -0.2737*** -0.2728*** 0.1168 0.0754 0.0168 -0.0154

WML 0.0192 0.0173 -0.059 -0.0399 0.0336 0.0198 0.0718* 0.0387 0.0239 0.0239 0.1166** 0.1164** 0.0933** 0.0960***

PTFSBD -0.0152** -0.0136** 0.0033 0.0079 -0.0006 0.0013 -0.0207** -0.0166** -0.0035 -0.0011 0.0172 0.0154 0.0125 0.011

PTFSFX 0.004 0.0037 -0.0103 -0.0115* -0.0106 -0.0111* 0.0026 0.0015 0.0027 0.0019 0.0208** 0.0202** 0.0233*** 0.0229***

PTFSCOM -0.0109* -0.0098* -0.0043 0.0008 -0.0005 0.0013 0.0150* -0.0127* -0.0033 -0.0014 0.0110 0.0119 0.0170** 0.0186**

PTFSIR 0.0017 0.0018 -0.0150** -0.0177*** -0.0235*** -0.0232*** -0.0115* -0.0095* -0.0092** -0.0092*** 0.0060 0.0064 0.0083 0.0077

PTFSSTK 0.0056 0.0087* -0.004 0.0008 0.0013 0.0021 0.003 0.0068 -0.0022 0.0012 0.0007 0.0029 -0.0008 0.002

Lambda (λ)

Rho (ρ) 0.2132*** 0.4702*** 0.3567*** 0.4297*** 0.3346*** 0.3086*** 0.3577***

Moran's I 0.1194** 0.190*** 0.109*** 0.13*** 0.159*** 0.08* 0.119***

Adj-R
2 0.779 0.811 0.583 0.689 0.485 0.574 0.631 0.731 0.693 0.752 0.207 0.314 0.289 0.4

Log-Like 449.65 453.68 384.94 395.34 402.09 407.12 384.03 396.65 456.28 463 359.42 362 399.61 403.34

AIC -875.3 -881.35 -745.87 -764.69 -780.17 -788.25 -744.06 -767.3 -888.56 -899.99 -694.83 -660.54 -775.21 -780.68

JB (d.f. 2) 2.39 167.67*** 394.64*** 52.33*** 97.62*** 7.62** 2.8

B.P. (d.f. 11) 21.59** 30.26*** 187.24*** 208.04*** 307.61*** 361.54*** 27.43*** 20.99** 131.92*** 154.55*** 6.45 6.16 6.16 6.28

K.B. (d.f. 11) 16.45 53.87*** 63.04*** 11.52 43.41*** 4.71 4.86

L.M.-Error

L.M.-Lag 8.89*** 19.88*** 9.81*** 27.24*** 13.44*** 4.65** 6.77***

L.R. (d.f. 1) 8.06*** 20.82*** 10.08*** 25.23*** 13.43*** 5.19** 7.47***

Note: * p < 0.10, ** p < 0.05, *** p < 0.01

Fixed Income Arb (AFI) Distressed (DistS) Multi-Strategies (MS) BTOP50 Barclays CTAEvent-Driven Arb (AED) Convertible Arb (ACNV)
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conservativeness premiums were increased by 1%, ceteris paribus. Likewise, the monthly AED returns were 

positively influenced by those of the adjacent months’ returns at an average of 21.32% when other factor risk 

premiums were controlled. An average of a 0.24% increase in the strategy returns would be observed if the size 

premiums were increased by 1%, all else being equal. Again, the CMA premium could harm the strategy returns, 

suggesting that strategy returns would be lower by 0.221% monthly if the conservativeness premiums were 

increased by 1%. 

 

We see that the most spatial autoregressive coefficient (𝝆, 𝝀) is highly significant. Several of the coefficient 

estimates are quite different from the OLS results in their magnitude and significance. Note that the estimates of 

the significant coefficients in the SLM are all smaller in absolute value relative to the OLS counterparts, which 

might imply the non-spatial model absorbs some degree of spatial autocorrelation in its estimates for the OLS 

regression coefficients. The largest change is for the xMKT term, which goes from 0.1485 in OLS to 0.1069 

(ACNV) in SLM and from 0.2468 in OLS to 0.1692 (Dist), both are highly significant. Other coefficients whose 

estimates are affected include HML in Dist (going from 0.2732 in OLS to 0.2257) and WML in BHFI (going 

from 0.0417 to 0.0398). The lack of significance of PTFSIR (BHFI, ELS, ELB, PREQ, AED, BTOP50, and 

CTA) and PTFSCOM (PREQ, Tech, ACNV, AFI, MS, and BTOP50) mostly remains. While the coefficients of 

PTFSBD in BHFI and ELB are no longer significant in the SLM, which would illustrate the effect that spatial 

autocorrelation might have on OLS estimates (Anselin and Rey, 2014), the coefficients of PTFSSTK in AED, 

PTFSFX in ACNV/AFI, and RMW in BTOP50 recover their significance upon the inclusion of spatial 

specifications.  

 

One of the insights from spatial dependence is that the value of the hedge fund return at any given location 

depends on the factor risk premiums at all other observations in the system. In particular, Kim et al. (2003) 

argue that if the column vector 𝒙𝒉 experiences an equal unit change at all locations, the resulting total effect on 

𝒚 is (𝜷𝒉/(𝟏 − 𝝆)). In the SLM, the total effect of a change in the explanatory variables on the dependent 

variable, (𝜷𝒉/(𝟏 − 𝝆)), is consisted of one due to the direct effect of 𝒙𝒉 at each location, 𝜷𝒉 and the other 

due to the indirect effect driven by the spatial multiplier, 𝜷𝒉𝝆/(𝟏 − 𝝆)9. Since |𝝆| < 𝟏 in practice, the 

distance decay effect will tend to die out for an order of contiguity well below 𝒏, i.e., if locations are far enough 

apart, there will only be a negligible spatial correlation between these hedge fund returns. The partial derivative 

of a column vector concerning all the elements of a row vector is a matrix since the effect must be assessed of a 

change in every one of the elements of the row in each element of the column. More precisely, 𝜹𝑾𝒙𝒉
/𝜹𝒙′𝒉 =

𝑾. With |𝝆| < 𝟏, the spatial multiplier in effect amplifies the direct effect of 𝒙𝒉 on 𝒚 at each location. 

Considering the monthly estimate for the explanatory variable xMKT, which yields 0.099% (AFI) in the non-

spatial OLS model and consistently gives 0.0657% in the SLM. The value of 0.0657% is a direct effect and the 

total effect of a change in a continuous explanatory variable can be computed as 𝜷̂/(𝟏 − 𝝆̂). Using the 

estimated value for 𝝆̂ from the first-order spatial lag instruments, this yields 0.0657/(1 - 0.3567) = 0.1021% for 

xMKT, a more than 55% increase in the magnitude of the original estimate. Of the total effect, 0.0364% per 

month is due to the spatial multiplier. The estimated total effect of 0.1021% is also higher than the estimate of 

0.099% obtained in the non-spatial OLS model. This illustrates the extent to which the spatial multiplier 

changes the analytical interpretation of the marginal effects of the excess market risk premium to the hedge fund 

performance.  

 

Any time we consider a sum of squares in the spatial domain, a sum of squares of spatially weighted residuals 

are the proper ones to use. Typically, the way we measure the relative importance of the lag vs. the rest is by 

looking at L.R. test or in an ad hoc manner looking at how the adj-𝑹𝟐 changes. The adj-𝑹𝟐 is some correction 

in favor of parsimony. As we load up the regression, our 𝑹𝟐 goes up but if we take something out of that 𝑹𝟐, 

we want to make sure that we are adding significant new variables. This is something along the same lines with 

                                                                    
9 For more details, see the coefficient interpretation and the spatial multiplier explanations in Anselin and Rey (2014). 
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the Akaike Information Criterion (AIC), which corrects the Log-Likelihood for the 𝟐𝑳. 𝟐𝑲 is the number of 

variables in the model: 𝑨𝑰𝑪 = −𝟐𝑳 − 𝟐𝑲. Since the real purpose of including the spatial lag operator is to get a 

consistent estimate of 𝜷, ignoring the spatial dependence can give us a highly misleading inference. For 

instance, if we translate these coefficients and multiplying with dollar values, they could be very different, 

which is not just a precision issue, this is an actual point estimate issue as well. In the output, the adj-𝑹𝟐 gives 

us the estimated asymptotic t-value and the same measure-of-fit. The 𝑹𝟐 that is given at SLM and SEM is not a 

regular 𝑹𝟐. Because it is a very crude indicator of fit, we would rather rely on the Log-Like or AIC if the 

models are in very different specifications. The Pseudo-𝑹𝟐 values are in general not directly comparable due to 

how they are calculated, represent the proportion of the variation of hedge fund returns that is accounted for by 

each model and are remarkably improved especially for the spatial autoregressive models, for instance, ELS 

(going from 0.84 in OLS to 0.867 in SLM), PREQ (from 0.659 to 0.718 in SEM), AED (from 0.779 to 0.811 in 

SLM), ACNV (from 0.583 to 0.689 in SLM), AFI (from 0.485 to 0.574 in SLM), Dist (from 0.631 to 0.731 in 

SLM), MS (from 0.207 to 0.314 in SLM), and CTA (from 0.289 to 0.4 in SLM). The standard error of the 

estimate indicates the extent to which the estimated sale prices vary from their actual values, and the values are 

remarkably similar across three models, but slightly improved for the SLM. In a similar vein, the SLM and SEM 

have a lower AIC value compare to the OLS model suggesting the superiority of spatial models in terms of the 

trade-off between its goodness-of-fit and complexity.  

 

However, this does not end the treatment of pure spatial correlation, pure spatial dependence, and spatial 

heterogeneity in the hedge fund data set. The value for the Breusch-Pagan (B.P.) test for spatial models are 44.8 

(BHFI), 22.16 (ELS), 27.44 (ELB), 29.9/31.98 (PREQ), 30.26 (AED), 208.04 (ACNV), 361.54 (AFI), 20.99 

(Dist), and 154.55 (MS), all of them are still highly significant for a 𝝌𝟐 variate with 11 degrees of freedom, 

strongly indicating the presence of remaining heteroscedasticity even after the treatment to correct the spatial 

dependence.  

 

Exhibit 6. Estimation by Spatial Weighted Two-Stage Least Squares – Equity Strategies 

 

 

 

 

 

 

 

 

 

 

When some of the explanatory variables are correlated with the error term, we refer to them as endogenous 

variables. This simultaneous equation bias violates one of the basic assumptions of underlying OLS, namely 

𝑬[𝑿′𝒖] = 𝟎, which may suggest the need to use heteroscedasticity and autocorrelation consistent (HAC) 

standard error estimate for inference. The monthly log-returns of implied volatility (VIX) are introduced as 

endogenous, with instruments such as one-month prior excess market return (LxMKT), one-month prior 

momentum premium (LWML), and one-month prior look-back straddle returns of short-term interest rate 

Variable BHFI ELS ELB PREQ (L) PREQ (E) PREQ (LE) Tech

Intercept 0.0008 0.00214*** 0.0009 0.002 0.0013 0.002 0.0055***

xMKT 0.3057*** 0.1967*** 0.5113*** 0.2189*** 0.3381*** 0.2206*** 0.2868***

SMB 0.2109*** 0.1732*** 0.2790*** 0.2327*** 0.16 0.2308** 0.2023**

HML 0.0655 0.0539 -0.0097 0.1457 0.0656 0.1461* -0.1537

RMW -0.0195 -0.1400** -0.1886*** -0.1535 -0.1494 -0.1523 -0.2694**

CMA -0.2799*** -0.2356*** -0.2332*** -0.2341* -0.1216 -0.2337* -0.4841***

WML 0.0428*** 0.0847*** 0.0502** 0.0864** 0.0790** 0.0869*** 0.1599***

PTFSBD -0.0052 -0.0053 -0.0068 -0.0055 -0.0065 -0.0055 -0.0173**

PTFSFX 0.0046 0.0059* 0.0081** 0.0041 0.0035 0.0041 0.0203***

PTFSCOM -0.0071** -0.0067* -0.0091* -0.0022 -0.0063 -0.0024 -0.0173

PTFSIR -0.0028 0.0004 -0.0007 -0.0004 0.0003 -0.0004 0.0083

PTFSSTK 0.0034 0.0136** 0.0075 0.0144 -0.0032 0.0142 0.0182

VIX (end) -0.0044 -0.0162* -0.005 -0.0235 0.0068 -0.0231 -0.0308**

Lambda (λ) 0.4260*** 0.0139

Rho (ρ) 0.1324** 0.1405** 0.1375*** 0.2588** 0.2576** 0.002

S Pseudo-R
2 0.929 0.845 0.942 0.664 0.688 0.665 0.735

A.K. (d.f. 1) 0.107 0.924 0.008 0.000 1.558

Note: * p < 0.10, ** p < 0.05, *** p < 0.01
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futures (LPTFSIR). Since the analytical results for the asymptotic variance of the ML estimator are based on 

stylized asymptotic setting, ignoring any potential sources of misspecification, such as non-normality or 

heteroscedasticity, the GMM-based spatial two-stage least square (GMM-S2SLS) estimators tend to be robust 

and remain valid in the presence of this misspecification. The remainder of this section provides an analysis of 

the same hedge fund data with the GMM-S2SLS estimation as shown in Exhibit 6 and 7.  

 

The major impact from accounting for endogeneity of the VIX is in the estimate of 𝝆, which increased from 

0.1207 to 0.1324 (BHFI), 0.1274 to 0.1375 (ELB), 0.2132 to 0.2616 (AED), 0.4702 to 0.6631 (ACNV), 0.3567 

to 0.7450 (AFI), 0.4297 to 0.5624 (Dist), 0.3346 to 0.4155 (MS), 0.3086 to 1.0493 (BTOP50), and 0.3577 to 

0.8698 (CTA), remaining highly significant. The estimates for the endogenous specifications are lower than 

those do not correct for the endogeneity. For instance, the GMM-S2SLS estimates of xMKT are much smaller at 

0.3057 (for BHFI vs. SLM’s 0.3217), 0.1967 (for ELS vs. SLM’s 0.2521), 0.5113 (for ELB vs. SLM’s 0.5299), 

0.2189 (for PREQ(L) vs. SLM’s 0.2979, 0.3229 in OLS), 0.2868 (for Tech vs. SLM’s 0.3902), 0.1767 (for AED 

vs. SLM’s 0.2484), 0.1848 (for Dist vs. SLM’s 0.1692), and become insignificant at BTOP50 and CTA (vs. 

SLM’s 0.1341 for both) in the GMM-S2SLS case. The larger the effect of the spatial multiplier, the smaller the 

estimates of coefficients for the lag. Therefore, the impact of excess market risk premium has been 

overestimated in the classical risk factor approaches in these hedge fund indices. On the other hand, the GMM-

S2SLS estimates of xMKT become larger at 0.1759 (for ACNV vs. SLM’s 0.1069 vs. 0.1485 in OLS), 0.1565 

(for AFI vs. SLM’s 0.0657 vs. 0.099 in OLS), and 0.1848 (for Dist vs. SLM’s 0.1692 vs. 0.2468 in OLS) than 

the SLM counterparts because of the bigger coefficient for the lag. One way to interpret these differences is that 

the introduction of the neighboring historical observations of hedge fund returns adjusts the estimates for the 

other coefficients such that the impact of heterogeneity was partially removed. Therefore, in these three hedge 

fund indices, the correction for endogeneity better reveals the true impact of excess market risk premiums to the 

contemporaneous hedge fund returns, which has been underestimated at the classical approaches.  

 

Exhibit 7. Estimation by Spatial Weighted Two-Stage Least Squares – Arbitrage Strategies 

 

 

 

 

 

 

 

 

 

 

With a first-order spatial lag for the instruments, the Anselin-Kelegian (A.K.) statistic yields a value of 0.107 

(BHFI), 0.924 (ELS), 0.008 (ELB), 0.000 (PREQ), 1.558 (Tech), 0.252 (AED), 0.964 (ACNV), 2.407 (Dist), 

0.000 (MS), and 1.972 (CTA) are not significant with 𝒑 > 0.10. This suggests the inclusion of the spatial lag 

term (or spatial error term for ELS) has corrected for the spatial autocorrelation that the spatial lag specification 

in GMM-S2SLS estimation is likely sufficient to address the evidence of spatial dependence in the estimations 

in Exhibit 4 and 5. In the meanwhile, the A.K. test for residual spatial autocorrelation statistic of BTOP50 is 

Variable AED ACNV AFI DistS MS BTOP50 Bar CTA

Intercept 0.0025*** -0.0008 -0.0023* 0.0001 0.0005 0.0007 0.0012

xMKT 0.1767*** 0.1759*** 0.1565** 0.1848*** 0.1454*** 0.0772 0.0751

SMB 0.2891*** 0.1178 0.0316 0.1388 0.1828*** -0.072 0.0365

HML 0.1298* 0.0607 -0.0739 0.1705 0.0208 0.0434 0.0726

RMW -0.0598 0.0137 0.05 -0.132 0.0288 0.2817* 0.1907*

CMA -0.3012*** -0.3278** -0.0939 -0.2734** -0.2653*** -0.1008 -0.1373

WML 0.0306 -0.0505 -0.0224 0.02 0.0227 0.1289** 0.1127***

PTFSBD -0.0142** 0.0111 0.0054 -0.0147* -0.0004 0.0102 0.0084

PTFSFX 0.0043 -0.0129* -0.0130** 0.0008 0.0017 0.0194** 0.0228***

PTFSCOM -0.0071 -0.0005 -0.0018 -0.0135* -0.0011 0.0165 0.0233***

PTFSIR 0.0003 -0.0166*** -0.0197*** -0.0079 -0.0091*** 0.0057 0.0052

PTFSSTK 0.0187** -0.0098 -0.0156 0.0022 0.0012 0.017 0.0147

VIX (end) -0.0190* 0.0256* 0.0379** 0.0118 0.0017 -0.0181 -0.0179

Lambda (λ)

Rho (ρ) 0.2616*** 0.6631*** 0.7450*** 0.5624*** 0.4155*** 1.0493*** 0.8698***

S Pseudo-R
2 0.796 0.562 0.492 0.717 0.716 0.309 0.237

A.K. (d.f. 1) 0.252 0.964 3.610* 2.407 0.000 5.29** 1.972

Note: * p < 0.10, ** p < 0.05, *** p < 0.01
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5.29, which is significant (𝒑 < 0.05), suggesting the presence of residual spatial autocorrelation in this model. If 

we take a very conservative 𝒑-value of 0.10, we would conclude that at the AFI (3.610) estimation has 

remaining spatial autocorrelation. However, the test does not provide a suggestion as to whether the alternative 

is a lag or an error specification.  

 

Overall, the standard errors are smaller when the spatial lags of the instruments are used, in line with greater 

efficiency that may be expected when more instruments are used. Similarly, the fit, as suggested by the Spatial 

pseudo-𝑹𝟐 is slightly worse for the lagged instruments included relative to when the lags are not included. Also, 

the smallest standard errors are systematically given by the OLS results, which may be misleading since they 

ignore the presence of heteroscedasticity and spatial autocorrelation. The spatial estimation of PREQ (LE) in 

Exhibit 6 is based on Eq. 7 of the Error-Lag combined model, where the value of 𝝀 is insignificant 0.0139, 

which bears no relation to the highly significant estimate found in the pure SEM of PREQ(E) (0.4260). In 

contrast, the estimate for the autoregressive coefficient 𝝆 is 0.2576, highly significant and very close to the 

value obtained in the pure SLM of PREQ(L)’s 0.2588. This would suggest the benefit of including a fully 

specified spatial autoregressive error term is quite marginal in this hedge fund index analysis. The most drastic 

difference pertains to the coefficient of SMB which goes from a non-significant 0.16 to a significant 0.2308 (𝒑 

< 0.05). While the estimated value of 𝝀 coefficient of Eq. 7 in PREQ(LE) does not necessarily point to a 

meaningful pattern of spatial spillover, it corrects for remaining spatial heterogeneity. 

 

While both pseudo-𝑹𝟐  and spatial pseudo-𝑹𝟐  measures across the SLM/SEM are computed as squared 

correlations between the observed and predicted values for the hedge fund returns, none of these measures is 

true 𝑹𝟐  because they do not correspond to the share of variance explained by the model. The usual 

interpretation of adj-𝑹𝟐 based on the decomposition of the variance into an explained and a residual component 

therefore no longer holds. The pseudo-𝑹𝟐 is only an approximate measure of fit and should be interpreted as 

such. It can be used as a rough guideline in model selection but is not an indication of the proportion of 

explained variance. In the absence of an alternative, the spatial pseudo-𝑹𝟐 is the preferred indicator
10

 to assess 

the relative model fit in an ad hoc fashion.  

 

A couple of more things for further elaboration; one is the measure of fit. If we have different weights, how we 

can tell one model from the other one, it all ties back to the objective function. But one possible objective 

function is the measure of fit. In the spatial model, because of the correlation, the standard 𝑹𝟐, which is a sum 

of squared residuals treating each hedge fund returns as equal is inappropriate. Because of the correlation, we 

have to treat them as unequal: Using spatial correlation tells us how differentially weight each observation. If we 

think of the heteroscedastic case, often is tackled through Weighted Least Squares and the weights are inverse to 

the variance: If we have observations with large error variance, they count less. If they have a smaller variance, 

they count more. If we apply in our adj-𝑹𝟐 criterion, it counts everybody equally, that’s not appropriate. What 

we really need is some criterion that doesn’t count each observation equally and that is provided by the 

likelihood. In that sense, as long as the dependent variable is the same, then we can compare the log-likelihoods 

(“Log-Like”) to maximize Log-Like if it’s between different specifications. In our case, our particular interest 

will be, how does this affect the weights matrix? We have used a triangular kernel function with an adaptive 

bandwidth based on the 4-nearest neighbors. If we have two models saying basically the same specification in 

terms of 𝑿’s with two different weights matrices, the one with the highest maximized Log-Like is the one that 

has the best fit and that would be the preferred. This is not a test since there is no 𝒑-value. So, there is no way 

                                                                    
10 Since the residual 𝒖 in the spatial lag model is not used for the error variance under the homoscedasticity, spatial 

pseudo-𝑹𝟐 measure of fit is based on the predicted values from the reduced form expressed as 𝒚̂𝑹 = (𝑰 − 𝝆̂𝑾)−𝟏(𝑿𝜷̂ +

𝒀𝜸̂), which gives a vector of predicted errors as 𝒆𝑹 = 𝒚 −  𝒚̂𝑹. The predicted values 𝒚̂𝑹 are used to compute a spatial 

pseudo-𝑹𝟐. 
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of telling how much better this fit is. The only thing we know that it is better but in the context of significance, 

they may be the same. We cannot really tell.  

 

Then the discussion in practice is if there are some slight differences in which variables we can count, which of 

the spatial variables do we count? Do we count what we call nuisance parameters, which are the parameters of 

error variance or do we not count? Some people count them, some people do not. That’s going to give slight 

differences between the AICs. The AIC criterion is used to find the model with the lowest value. So, the higher 

the likelihood, the lower the AIC. Often, they will point to the same model but when there are huge differences 

between the number of explanatory variables, we might end up with a difference between the AIC as a criterion 

and maximized Log-Like. But in our work, we are interested in the weights matrix and this is not going to make 

a big difference. In that case, what do we use an AIC or Log-Like doesn’t matter because 𝑲 as in 𝑨𝑰𝑪 =
−𝟐𝑳 − 𝟐𝑲 is the same. Any time 𝑲 is the same, there’s not going to be a difference between these two. When 

we compare vastly different models, the AIC is more appropriate guidance because it corrects for that and it 

corrects in favor of parsimony, i.e., in favor of models with fewer parameters in them. In this particular study, 

the correction for heteroscedasticity and endogeneity seems warranted, at least in terms of substantive 

interpretation of the excess market risk premiums. 

 

Another question in our mind might be, is there a feasible solution to extract spatial lag from the errors? The real 

issue is, even after we have a satisfactory model, whether the model is turned out to be misspecified in some 

way or not. Then what we really want to look at that point is the residuals of that model. However, in very 

specific, the residuals of interest are not necessarily the difference between the predicted value and observed 

value because these are transformed residuals. The ones that enter into the likelihood function are not the raw 

residuals, they are in fact spatially-filtered residuals. Then we have to look at patterns in the spatially-filtered 

residuals, not in the raw residuals because if we just estimate by feasible Generalized Least Squares and we take 

these residuals, they still have the spatial effect in them. To get the spatial effect out of them, we have to 

spatially filter them as well. If we measure the Moran’s 𝑰 to the raw residuals, it might still look to be 

correlated but once we spatially filter them and the Moran Scatter Plot falls flat, which means we essentially 

have removed spatial autocorrelation from the financial time series dataset. It’s always important to know where 

the line stops and so to deal with the residuals that are compatible with our original intention.  

 

 

4. Case Study: Spatial Dependences in a failed credit hedge fund 

 

“International Investment Group (IIG), which specializes in trade finance lending to small and medium-sized 

companies in Latin America, has had its license revoked by the U.S. Securities and Exchange Commission (SEC) 

following what the regulator calls “a string of frauds”. As investment advisor to the Trade Opportunities Fund, 

the Global Trade Finance Fund, and the Structured Trade Finance Fund, IIG offers institutions and other 

investors the opportunity to invest in diversified trade finance portfolios, originally through fund products and 

subsequently through other types of investment vehicles, such as collateralized loan obligations. (…) The 

amount sold in fake loan assets to clients by IIG was around US$60mn, the case illustrates the risks inherent to 

alternative trade finance. On its website and in investor prospectuses, IIG touts its risk control strategies, which 

include portfolio concentration limits at the borrower, country, and commodity level, as well as a “robust” credit 

review process for borrowers. However, a series of defaults, including on a US$30mn loan by Trade 

Opportunities Fund to a South American coffee producer and a US$30mn loan to an unnamed seafood producer, 

soon saw the firm getting into trouble.” “IIG trade finance fund caught in alleged Ponzi scheme,” Global 

Trade Review, December 9, 2019. 
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“TCA Fund Management Group Corp, a Miami-area business lender that produced nearly a decade of virtually 

uninterrupted gains, is liquidating its main investment fund amidst a U.S. securities investigation related to its 

accounting practices. (…) Citing employee whistleblowers, NBC reported that Grant Thornton raised questions 

in 2019 about some of the fund’s 2018 figures and issued a qualified opinion. The investor in contact with 

Reuters said TCA was soliciting additional money for the troubled fund in November and December by offering 

fee discounts. A TCA marketing email sent to another prospective investor in December, seen by Reuters, said 

the TCA Global Credit Master Fund, launched in 2010, targets net annual returns of 8% to 12%. It also noted 

gains every month between January 2017 and November 2019, with annual returns of 8.12% in 2017, 8.75% in 

2018, and 7.07% in 2019 through November. Reuters reported in July 2017 that the same fund had produced 

nearly 90 straight months of positive returns.” “SEC probes Florida private lender over accounting 

questions,” Reuters, January 23, 2020.  

 

Since its launch in March 2010, the fund has been known as a predominately short-duration, absolute return 

private credit fund specializing in senior secured lending as well as bespoke investment banking and advisory 

services to small and medium-sized companies mainly in the US, Canada, Western Europe, and Australia. The 

fund was known to have some focused strategies such as; (a) the steady origination of $10~$25mn quarterly; (b) 

loans are generally receivables-driven, focusing on the most liquid part of the balance sheet; (c) small position 

sizes, typically less than 1% of the portfolio with average loan size $1~$2mn; (d) loans are generally senior 

secured, income-generating, and short-duration with targeted annual net returns to investors of 8~12%; (e) no 

investment style drift, no shorting
11

; and (f) utilize industry relationships to generate non-lending related 

investment banking services to the small and midcap markets.  

 

The offering circular of the fund explains to use two primary loan structures: The majority of the fund's loans 

are short-term, senior secured, revolving lines of credit where the primary direct collateral used for loan sizing is 

the borrowing firm's near-term receivables and vendor payments due to them. This represents generally over 98% 

of the transactions in the portfolio. The second structure is a short-term self-liquidating debenture (e.g., a 

revenue bond with a sinking-fund feature), which is also a senior or directly secured instrument that generally 

has an “estoppel” or direct payment from a much larger customer of the borrower. Measured from a fixed 

income perspective, the fund’s loan portfolios are extremely short-term. The revolving lines of credit have a 

term (renewable at the fund's option) of 180 days, but are ‘proved up’ each week and are based on collateral that 

is generally not more than 90 days. The fund’s few amortizing loan structures are 6- to 12-month self-liquidating 

instruments. The fund takes a “blanket” lien or a complete fixed and floating charge over all of the borrower's 

assets. One indicator that is most important to the fund was the ‘Debt Service Coverage Ratio,’ which is a 

measurement of the cash flow available to pay current debt obligations. By having an average loan-to-value 

(LTV) of 70%, the fund is at least 130% overcollateralized. 

 

By assuming the independence of the observations, the OLS ignores the presence of spatial autocorrelation. 

Based on monthly net-of-the fee returns data from April 2010 until December 2018, we run seven different 

factor risk premium models from OLS to the GMM-S2SLS of both lag and error models with the summarized 

estimation result in Exhibit 8. Before running the spatial autoregressive models, spatial autocorrelation tests via 

the global Moran’s 𝑰 statistic were performed. From Exhibit 9, the diagnostic statistic of the Moran’s 𝑰 on the 

fund return data shows -0.054, which implies no evidence of smoothing whatsoever in the fund’s NAV. Likewise, 

Moran’s 𝑰 statistic for the errors 𝜺 of the OLS model shown in Exhibit 8 was also estimated to the value of -

0.0296 but insignificant, which is also indicative of no-spatial autocorrelation in the obtained OLS residuals. 

                                                                    
11 After all, there is no feasible way available to the managers of private debt funds to short the loans of the non-rated, small 

and medium-sized companies even in the highly sophisticated U.S. markets. 
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Exhibit 8. Spatial Dependence Examinations in a failed Credit Fund  

 

 

 

 

 

 

 

 

 

 

 

 

 

The significance of the spatial parameters 𝝆 and 𝝀 in the SLM and SEM models are indicative of the effects 

of spatial autocorrelation in the fund returns. However, the examination of the coefficients indicates that the use 

of the spatial lag term 𝝆𝑾𝒚  in the SLM was simply insignificant. In the presence of strong spatial 

autocorrelation, likely, the spatial regression model will significantly outperform the OLS model, which is not 

the case as shown in Exhibit 8. Furthermore, the large difference between B.P. and K.B. test statistic confirms 

potential error non-normality, as already confirmed in its highly significant Jarque-Bera statistic, since under 

normality, the value for both should converge each other. The GMM-SLEM estimation in the last column of 

Exhibit 8 is based on Eq. 7 of Spatial Lag and Error specification. Eq. 5.3 shows 𝒚 = (𝝀 + 𝝆)𝑾𝒚 − 𝝀𝝆𝑾𝟐𝒚 +
𝑿𝜷 − 𝝀𝑾𝑿𝜷 +  𝜺. With 𝝀 estimate of 0.6194 and 𝝆 estimate of -0.5376, the first coefficient of (𝝀 + 𝝆) term 

would end up +0.082, which is near to zero and negating any significant influence from the first-order neighbors. 

The impact of second-order neighbors (−𝝀𝝆) becomes positive since the opposite sign of the estimated 

coefficients in the second term. 

 

Exhibit 9. Moran’s 𝑰, LISA Cluster, and Significance Maps of a failed credit fund 

 

 

 

 

 

 

Variable OLS LM-SLM LM-SEM GMM-S2SLS GMM-2SLM GMM-2SEM GMM-SLEM

Intercept 0.0097*** 0.0109*** 0.0097*** 0.0124*** 0.0078* 0.0124*** 0.0054*

xMKT 0.0282 0.0282 0.0275 -0.1812 -0.1231 -0.1808 -0.1212

SMB 0.0779 0.0806 0.0782 0.2426* 0.1885 0.2421 0.192

HML -0.0995 -0.1007 -0.1053 0.0511 0.0132 0.0511 0.0213

RMW -0.1878 -0.1723 -0.1726 -0.2325 -0.2693* -0.2339 -0.1989

CMA 0.2329 0.2347 0.234 0.0253 0.0772 0.0256 0.0299

WML 0.0328 0.0287 0.0253 0.0986 0.0933 0.0989 -0.1989

PTFSBD 0.0149 0.0152 0.015 0.0066 0.008 0.0066 0.0058

PTFSFX -0.0137 -0.0138* -0.0138* -0.0092 -0.0101 -0.0091 -0.0087

PTFSCOM 0.0089 0.0085 0.0084 0.0148 0.0146* 0.0148* 0.0126*

PTFSIR -0.0046 -0.0044 -0.004 -0.0064 -0.0063 -0.0065 -0.0028

PTFSSTK 0.0032 0.0032 0.0034 0.0281 0.0212* 0.0281 0.0199*

VIX (end) -0.0525* -0.0379** -0.0524 -0.0355*

Lambda (λ) -0.0951 0.0208 0.6194**

Rho (ρ) -0.1163 0.3698 -0.5376

Moran's I -0.0296

Adj-R
2 -0.0317 0.0842 0.0814 0.0991 0.096 0.0992 0.0805

Log-Like 317.003 317.266 317.15

AIC -610.007 -608.533 -610.301

JB (d.f. 2) 932.02***

B.P. (d.f. 11) 92.76*** 93.02*** 94.44***

K.B. (d.f. 11) 11.48

L.M.-Error 0.6905

L.M.-Lag 0.4939

L.R. (d.f. 1) 0.5263 0.2943

A.K. (d.f. 1) 0.054 0.696

Note: * p < 0.10, ** p < 0.05, *** p < 0.01
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The Local Indicators of Spatial Association (LISA) significance map shows the locations with a significant local 

statistic, with the degree of significance reflected in increasingly darker shades of green. The map starts with 𝒑 

< 0.05 and shows all the categories of significance that are meaningful for the given number of permutations. In 

the third panel of Exhibit 9, since there were 999 permutations, the smallest pseudo 𝒑-value is 0.001, with the 

darkest shade of green locations. The second panel of Exhibit 9 shows the cluster map of the fund returns which 

augments the significant locations with an indication of the type of spatial association based on the location of 

the value and its spatial lag in the Moran Scatter Plot. With all four categories; dark red for the high-high 

clusters, dark blue for the low-low clusters, and light blue for the low-high spatial outliers, the fund 

demonstrates both Hot (red) and Cold (blue) Spots below the reversed 45-degree line of the Voronoi map of 

Thiessen Polygons symbolized by the entropy of variation between neighboring returns, which is a very rare 

phenomenon in the world of short-volatility trades. As the positive correlation of the Hot Spot implies the 

locations with high fund returns with a high level of similarity with its neighboring historical returns, the Cold 

Spot implies the locations with low hedge fund returns with a high level of similarity with its neighboring 

returns. Here, the Hot Spots can be observed when the equity market index level is relatively low but VIX may 

be either low and high but no signs of significance in between, while the small evidence of the Cold Spot stays 

in the mid-level of VIX. 

 

We have a few qualitative points from the spatial analytical perspective: Firstly, the adjusted-𝑹𝟐 from the OLS 

model was negative and none of the rest of spatial pseudo-𝑹𝟐 value was over the threshold of 0.1, which 

implies that any typical risk factor premiums are no viable exogenous explanatory variable, which is quite 

exceptional. Secondly, our separate analysis shows that the share of variance explained by the S&P U.S. High 

Yield Corporate Bond Index (“HYI”) to the variations of the S&P/LSTA U.S. Leveraged Loan 100 B/BB Rating 

Index (“LSTA”) marks 69.8% during the period, both HYI and LSTA do not have any significant explanatory 

power to this failed credit hedge fund. With 𝑹𝟐 value of mere 0.012 and non-significant negative estimated 

coefficients, the failed credit hedge fund might be a wholly different kind of animal to deal with. In fact, as with 

the usual case of analyzing leveraged loans and high-yield indices, those loans with external credit ratings of 

B/BB should come along with highly significant exposures to the excess market risk premiums (xMKT), 

positive size (SMB), and negative CMA (thus aggressive capital structure) risk premium characteristics. 

However, none of the spatial or non-spatial specifications show even a slight bit of significance in xMKT, SMB, 

CMA, and even PTFSIR premiums. Because the fund’s maximum duration of its disbursed loan was stated as 

less than 180 days during the initial conference calls, the pricing and revenue structure of the fund should have 

been highly sensitive to the fluctuation of short-term money market futures and the relevant derivatives. Since 

the size of the intercept ranges from 97 to 124 bps per month, the fund manager should have proudly announced 

the uniqueness of their absolute return strategy even though the fund specializes in small and medium-sized 

lenders with no external credit ratings, i.e., junk-loans. Thirdly, the fund did not value the loan portfolio 

according to the viable marking-to-market practice, which means the fund manager price its portfolio to the 

‘best of the manager’s knowledge and experience.’ Certainly, the quarterly reports of operation review on the 

validity of the pricing of the fund’s net asset value (NAV) were available after subscription of the fund but any 

prior review of the report as part of investor due diligence was not typically allowed. This might be a classic 

case of spatial autocorrelation on its returns. In summary, the spatial variation of the credit hedge fund returns 

failed to be within the spectrum of conventional knowledge and wisdom. Therefore, some thorough due 

diligence question and answer sessions should have accompanied before any further commitment to this failed 

credit manager with ‘overly outlying spatial performance.’ Once the track record seems too good to be true, it 

probably is not, at least within the hedge fund domains. 
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5. Conclusion 

 

Unlike traditional multi-factor performance attribution analysis, which usually attempts to explain hedge fund 

returns in terms of classical and alternative factor risk premiums, considering the neighboring historical return 

characteristics through the ‘imaginary’ geographic location grids, spatial econometric models in general 

explicitly account for two major spatial effects in hedge fund returns typically ignored in global models: Spatial 

dependency and spatial heterogeneity. The former refers to the similarity commonly observed in the values of 

nearby historical returns whilst the latter indicates that the processes generating hedge fund returns might vary 

over space, usually reflecting fluctuations in risk appetites. Parameter estimates from traditional OLS models, 

which represent the relationships between hedge fund returns and the associated time-varying risk premium 

characteristics, can be biased in the presence of these spatial effects. With spatial independence, the OLS 

estimator is the best linear unbiased estimator (BLUE). However, the spatial dependence in the hedge fund 

returns might be present because neighboring historical hedge fund returns are more alike than long-distance 

returns in the grid surfaces. Furthermore, the OLS estimator is inefficient due to the presence of a correlation in 

the disturbances. Since the spatial dependence and spatial heterogeneity frequently coexist in many spatial 

processes, factor risk premium models capable of addressing both spatial effects become a desirable option. 

Given the importance of understanding spatial variation in hedge fund returns and obtaining the grid surfaces of 

these variations, the methodologies discussed in this paper enable the management of the heterogeneity of 

financial time series and it may be one of the main contributions of our work. To this end, of primary interest 

here is to understand both spatial effects in the processes of hedge fund returns through the application of the 

GMM-S2SLS augmented by the endogeneity of implied volatilities. 

 

The major findings and implications of this study are summarized follows: First, a significant spatial dependence 

in the return process was found among the hedge fund indices of BHFI, ELS, ELB, PREQ, Tech, AED, ACNV, 

AFI, Dist, MS, BTOP50, and CTA. This implies that a conventional factor risk premium model based on OLS 

estimation requires further augmentation. The spatial performance attribution used to address the spatial 

dependence problem outperformed the conventional performance attribution analysis in terms of goodness-of-fit 

measures. The coefficient estimates of the excess market risk premium of the spatial model were mostly smaller 

than those of the classic OLS model, except for ACNV, AFI, and Dist, indicating that the effects of market risk 

premium would have been overestimated in the classical attribution analysis. Besides, the spatial model revealed 

that the process of hedge fund returns had a positive impact on those of adjacent units. For instance, the monthly 

coefficient estimate for xMKT yields 0.099% (AFI) in the non-spatial OLS model but consistently gives 0.0657% 

in the SLM, which is the direct effect. Under the total effect of a change in xMKT can be computed as 0.1021% 

by 𝜷̂/(𝟏 − 𝝆̂), over 55% increase in the magnitude of the original estimate. Of the total effect, 0.0364% per 

month (35.7% of the total effect) is due to the spatial multiplier. The estimated total effect of 0.1021% is also 

higher than the estimate of 0.099% obtained in the non-spatial OLS model. This illustrates the extent to which 

the spatial multiplier changes the interpretation of marginal effects in the hedge fund performance attributions. 

 

There is no strong evidence for the superiority of combining both nuisance and substantive spatial dependencies 

in a single model. The major implication is to keep the specification simple. In particular, the value of the 𝝀 

coefficient in the spatial error+lag combined model does not necessarily point to a meaningful pattern of spatial 

spillover but ends up correcting for remaining spatial heteroscedasticity. The standard errors show the usual 

pattern, with values increasing in order from the classic OLS result to White and HAC. The latter consistently 

yields the larger values in most standard error estimates, which suggests we should use caution in the 

interpretation of the standard approaches because the classic OLS results for the coefficient standard error may 

provide a false sense of precision. In applications where precision plays a crucial role, such as the calculation of 

economic costs and benefits, this should be properly taken into account.  
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The parameters and their standard errors are also stable and, in this way, the results from the spatial lag and error 

model seem to be robust. Estimating the lag model gives a significant value of the spatial dependence parameter 

𝝆 for one type of neighboring structure of queen contiguity. This indicates that spatial dependence or the 

adjacency effect to some extent play a role in determining the return generation process of some hedge funds. 

The secondary feature of the data is spillover effects in the residuals, which may be accounted for by using the 

SEM. Although these global spatial models represent a substantial improvement over classic performance 

attribution analysis, a major issue is that the hedge fund return processes are assumed to be stationary over space 

in the longer term, which is not necessarily the case in practice.  

 

Lastly, the spatial modeling might be applicable to an ad hoc screening and help to create a more focused due 

diligence questionnaire. Based on our examinations and findings through the spatial exploratory framework 

applied to the rare time series for possible irregularity detection, it is basically impossible to elicit any 

meaningful information from the monthly returns of a recently failed credit hedge fund. The manager might 

claim and position itself as an absolute return manager with 100% short-duration, long-only exposures to low-

profile credits. However, at the onset of an economic downturn, earnings of those small and medium-sized low 

credibility firms tend to fall sharply. Most forms of risk premium connected with credit markets have short 

volatility characteristics because the idea behind a risk premium is to gain a higher return in exchange for 

accepting systematic risk. When risk aversion rises, the prices of many risky assets fall including the implied 

price of low or no credit loans. Furthermore, many risk premia are correlated because they rely on healthy 

economic activity, cash flow, and profits. The fund would demand that risk premia generate excess returns 

because they subject the fund to additional risk. The fund has a special need for robust returns from its 

investments when the economy is weak to supplement diminished incomes from labor, corporate cash flow, or 

tax revenues. But this is also precisely the time when most of the portfolio companies (i.e., the borrowers) of the 

fund would perform worst. Therefore, without any concrete evidence of spatial autocorrelations in the monthly 

return profile, it is highly unlikely to accept the manager’s track records as it is. The further detailed investors’ 

due diligence processes by highly experienced professional calibers considered to be a viable preventive 

measure from lines of the victims of any hedge fund Ponzi scheme going forward. 
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국 문 초 록 

 

글로벌 헤지 펀드 수익률의 공간의존성 연구 

 

저자: 조 정 근 

 

Barclays Hedge Fund 스타일 지수의 2008 년 1 월부터 2018 년 12 월까지 월간자료 분석을 통해, 

당월 헤지펀드 수익률에 대한 과거 수익률의 공간적 의존성을 확인하였다. 기존 최소자승법 

(OLS)과 Arbitrage Pricing Theory 에 기초한 전통적 헤지펀드 성과분석방법론에서는 다루지 않은 

시계열데이터의 공간의존성이란 주가지수를 경도로, 내재변동상지수를 위도로 두고 가상의 

투자수익-위험의 지도를 작성한다면, 현재 시점의 투자자가 당월에 예측할 수 있는 특정한 

스타일의 헤지펀드 수익률은 당월에 실현된 투자수익-위험의 위경도상 지표에서 가까운 거리에서 

실현된 역사적 수익률과는 매우 높은 자기상관을 가지는 현상을 설명함으로써 W. Tobler(1970)의 

지리학 제 1 법칙, “All things are related, but closer things are more related (모든 것은 다른 모든 것과 

관련되어 있으나, 가까운 것은 먼 것보다 더 관계가 깊다)”의 적용을 가능하도록 한다. 분석을 

통해 Equity Long-Short, Equity Long-Bias, Event-Driven Arbitrage, Convertible Arbitrage, Fixed-Income 

Arbitrage, Distressed Securities, Multi-Strategies 및 Commodity Trading Advisors 등 Barclays 헤지펀드 

스타일지수의 월간 수익률 데이터는 이러한 공간의존성을 내재한 것으로 확인되었다. 

 

금융 시계열 데이터의 공간의존성은 월간 데이터의 공간적 자기상관 (Spatial Autocorrelation), 

공간적 이분산성 (Spatial Heteroscedasticity) 및 이들의 상호적인 영향을 의미한다. 본 연구는 

시계열 공간의존성을 해소할 수 있는 방법으로 1 차적으로 Spatial Lag Model (SLM)과 Spatial Error 

Model (SEM)을 활용하였으며, 특히 공간변수의 도입만으로 해소되지 않는 금융시계열 데이터에 

잔존하는 공간의존성을 Generalized Method of Moment (GMM) 방법론에 따른 Spatial Two Stage Least 

Squares (S2SLS) 모형을 통해 상당부분 해소가 가능함을 확인했다. 공간계량경제학적 방법론을 

최근에 국내외에 물의를 빚으며 운용을 중단하고 현재 미국 증권감독국 (SEC)의 감사를 받고 

있는 한 사모대출펀드의 수익률 데이터에 적용하여, 사전 Due Diligence 를 통해 궁극적으로 

문제성이 내재한 펀드를 가려낼 수 있는 가능성에 대한 질적 및 계량적인 분석을 적용하였다. 

근거는 해당 사모대출펀드는 대출자산의 시가평가 (Marking-to-Market)를 할 수 없기 때문에 

헤지펀드 운용사의 주관적인 판단에 따른 인위적인 수익률 Smoothing 으로 월간 수익률 데이터의 

공간적 자기상관과 이분산성이 잘 설명될 수 있으리라는 판단에 따른 것이었다. 하지만 “Once the 

track record seems too good to be true, it probably is not, at least within the hedge fund domains” 이라는 

잠정적 결론에 도달할 정도로 기존의 정형화된 방법론 및 공간의존성을 고려한 방법론으로도 

해설이 되지 않았다. 결국, 공간의존성이 필연적으로 존재할 수밖에 없는 운용전략에 

공간의존성을 설명하는 방법론이 적용될 수 없다면 해당 매니저의 운용수익률 데이터는 

운용전략의 질적 분석부터 다시 시작해야 한다는 판단이다. 

 

주요 단어: Spatial Dependence, Spatial Lag, Spatial Error, Hedge Fund Performance Attribution 
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