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1. Introduction 

Many theoretical and empirical studies have been conducted since the introduction of the Black and 

Scholes (1973) option-pricing model (BS henceforth). The fatal error of the BS model is the presence of 

the “volatility smile” (or volatility term structure) phenomenon, where the volatilities implied in 

option prices are observed by the exercise price (or time to maturity), a phenomenon called the 

“volatility surface.” The current literature focuses on the usefulness of option-pricing models by 

extending the BS model’s simple assumptions using various models that extend the assumption of the 

geometric Brownian motion process for the underlying assets assumed in the BS model, Such models 

are used for the convenience of closed-form solution derivation but are not always useful in practice. 

For example, academia and practice have developed a stochastic interest rates model that assumes 

interest rates change over time (e.g., Amin and Jarrow, 1991, 1992; Rindell, 1995; Ho, Stapleton and 

Subrahmanyam, 1997), a stochastic volatility model that assumes volatility changes over time (e.g., 

Hull and White, 1987; Johnson and Shanno, 1987; Scott, 1987; Wiggins, 1987; Heston, 1993), a jump 

diffusion model that assumes large jumps in underlying assets (e.g., Merton, 1976; Naik and Lee, 1990; 

Kou, 2002; Kou and Wang, 2004), a regime-switching model that assumes jumps in volatility (e.g., 

Naik, 1993), a variance gamma model (e.g., Madan, Carr and Chang, 1998), and a Generalized 

Autoregressive Conditional Heteroscedasticity (GARCH) model that assumes the process of 

underlying assets is a discrete model (e.g., Duan, 1995; Heston and Nandi, 2000; Duan and Zhang, 

2001; Hsieh and Ritchken, 2005). Recent studies also include the Ad-Hoc Black-Scholes (AHBS) model, 

which transforms the BS model used by traders in the options market. Which one is the most useful 

option pricing model for pricing and hedging options? 

To address this question, Bakshi, Cao and Chen (1997, 2000), Bates (2003), and Kim and Kim (2004, 

2005) compare the empirical performance of various alternative option-pricing models and conclude 

that the stochastic volatility model improves the BS model most. However, Dumas, Fleming and 

Whaley (1998), Jackwerth and Rubinstein (2001), Li and Pearson (2004, 2007), Kim (2009, 2014, 2017), 

Choi and Ok (2011), Choi, Jordan and Ok (2012), and Dixit and Singh (2018) include in their 

comparison the AHBS model, a simple modification of the BS model, and show in empirical results 
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that the AHBS models are better than mathematically sophisticated models when stochastic volatility 

and jumps are considered. In short, the AHBS model is found to be the best alternative to 

mathematically sophisticated option-pricing models given its simplicity of implementation.  

Cross-sectional options data with multiple maturities are used to estimate the parameters of the 

AHBS models in two ways: Parameters can be estimated using option prices based on maturity or 

using all option prices at all maturities, regardless of expiration. First, consider the Portfolio of 

Volatility Smiles method. Each set of parameters is estimated separately for each maturity, which 

allows a structure of volatility smile whose characteristics differ at each maturity. If the volatility smile 

structure for each maturity is stable over time, the Portfolio of Volatility Smiles method is useful. The 

second method is the Volatility Surface method, where the volatility surface is considered as a 

portfolio consisting of multiple volatility smiles. The Portfolio of Volatility Smiles method assumes 

that the volatility smile at each maturity is an individual asset and estimates the parameters that 

describe each asset. In the Volatility Surface method, regardless of the time to maturity, a single 

parameter set that describes the entire volatility surface as a single asset is estimated, thus describing 

the entire volatility surface structure at once. If the volatility surface structure for all maturities is stable 

over time, the Volatility Surface method is useful. 

We compare the AHBS models’ pricing and hedging performance using two ways to employ cross-

sectional options data with multiple maturities. In sample pricing, one-day-ahead or one-week-ahead 

out-of-sample pricing and one-day or one-week hedging performance are examined. In the Portfolio 

of Volatility Smiles method, the parameters estimated at each time to maturity apply only to the next-

day or next-week options with the corresponding time to maturity. In the Volatility Surface method, 

a single parameter set that is estimated regardless of expiration is applied to all next-day or next-week 

options. For the robustness check, we examine the performance of the stochastic volatility (SV) model, 

a mathematically sophisticated model that is known for its excellent pricing and hedging performance. 

This study is the first to compare the performance of the Portfolio of Volatility Smiles method with 

the Volatility Surface method to price and hedge options with multiple times to maturity. The 

parameter-estimation method is as important as the selection of the option-pricing model in finding 
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the best option-pricing model, as no matter how good the option-pricing model, incorrectly estimated 

parameters result in “garbage in, garbage out.” This study proposes the option-pricing model’s best 

parameter-estimation method when one is pricing and hedging options with multiple times to 

maturity. Empirical studies by Kim (2009), Choi and Ok (2011), and Choi, Jordan and Ok (2012) on the 

AHBS models focus on pricing and hedging short-term options with a single maturity, so they do not 

include variables related to time to maturity as independent variables in the AHBS model. In contrast, 

we investigate all options with multiple maturities at any given time.  

We find that, in pricing and hedging options with various times to maturity, the Portfolio of 

Volatility Smiles method generally outperforms the Volatility Surface method. The SV model shows 

the best in in-sample pricing and one-day-ahead out-of-sample pricing performance but the result is 

reversed by the AHBS model in one-week-ahead out-of-sample pricing. In hedging performance, the 

AHBS model outperforms the BS and SV models, regardless of time to maturity or moneyness. As a 

result, considering the volatility smile individually at each maturity is more effective in pricing and 

hedging options than is using the volatility surface simultaneously. 

The paper is organized as follows. Section 2 introduces the AHBS models and the SV model, 

presenting two ways to use cross-sectional options data with multiple maturities, the Portfolio of 

Volatility Smiles and the Volatility Surface methods. Section 3 describes the sample data. In Section 4, 

we analyze the parameters of the option pricing models and examine the in-sample pricing, out-of-

sample pricing, and hedging performance of several option-pricing models. Finally, Section 5 draws 

conclusions. 

 

2. Option Pricing Models and Parameter Estimation Methods 

2.1 The Ad-Hoc Black-Scholes Model 

Despite its problems, the BS model is still widely used by market participants. When market traders 

use the BS model, they assume that volatility changes with exercise price and time to maturity to 

explain the “volatility smile” or “volatility surface” phenomenon observed in the options market. As 
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Dumas, Fleming and Whaley (1998) point out, this approach reduces the issues associated with the BS 

model’s constant volatility assumptions.  

The AHBS model is implemented assuming that the implied volatility for each option is related to 

the exercise price and time to maturity. In other words, users assume that the volatility of the 

underlying assets entered into the BS model is a function of the exercise price, time to maturity, or a 

combination thereof. However, previous studies on the AHBS model implement the models with only 

the exercise prices of the short-term options, taking into account that these options are the most liquid. 

In this study, we compare the performance of the AHBS models with the time-to-maturity factors. 

There are two types of AHBS models: The “relative smile” approach, also called the “sticky volatility” 

model, regresses an option’s implied volatility as a dependent variable on the option’s relative 

moneyness as an independent variable. The “absolute smile” approach, also known as the “sticky 

delta” model, regresses the implied volatility as the dependent variable on the option’s absolute strike 

price as the independent variable. Jackwerth and Rubinstein (2001), Li and Pearson (2007), Kim (2009), 

and Choi and Ok (2011) compare these two approaches and show that the “absolute smile” approach 

performs better than the “relative smile” approach. Studies in which the AHBS models outperform 

other models use the “absolute smile” method (Dumas, Fleming and Whaley, 1998; Jackwerth and 

Rubinstein, 2001; Li and Pearson, 2007), while studies in which the AHBS models perform poorly 

compared to other models use the “relative smile” method (Kirgiz, 2001; Kim and Kim, 2004). Kim 

(2009) also shows that the simplest AHBS model—that with fewer independent variables—

outperforms more sophisticated models that assume a large number of independent variables, so the 

AHBS model can have an over-fitting problem. Therefore, the simple “absolute smile” approach is 

expected to show the best performance. The AHBS models for the Volatility Surface model are 

assumed in sixteen forms (Equations (1)-(16)). In the Portfolio of Volatility Smiles method, A1, A2, R1, 

and R2 models without the time-to-maturity variables are used. 

 

A1T1 1 2 3i i iK    = +  +   (1) 

A1T1C 1 2 3 4i i i i iK K      = +  +  +    (2) 
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A1T2 ( )
2

1 2 3 4i i i iK      = +  +  +   (3) 

A1T2C ( )
2

1 2 3 4 5i i i i i iK K        = +  +  +  +    (4) 

A2T1 ( )
2

1 2 3 4i i i iK K     = +  +  +   (5) 

A2T1C ( )
2

1 2 3 4 5i i i i i iK K K       = +  +  +  +    (6) 

A2T2 ( ) ( )
2 2

1 2 3 4 5i i i i iK K       = +  +  +  +   (7) 

A2T2C ( ) ( )
2 2

1 2 3 4 5 6i i i i i i iK K K         = +  +  +  +  +    (8) 

R1T1 ( )1 2 3/i i iS K    = +  +   (9) 

R1T1C ( ) ( )1 2 3 4/ /i i i i iS K S K      = +  +  +    (10) 

R1T2 ( ) ( )
2

1 2 3 4/i i i iS K      = +  +  +   (11) 

R1T2C ( ) ( ) ( )
2

1 2 3 4 5/ /i i i i i iS K S K        = +  +  +  +    (12) 

R2T1 ( ) ( )
2

1 2 3 4/ /i i i iS K S K     = +  +  +   (13) 

R2T1C ( ) ( ) ( )
2

1 2 3 4 5/ / /i i i i i iS K S K S K       = +  +  +  +    (14) 

R2T2 ( ) ( ) ( )
2 2

1 2 3 4 5/ /i i i i iS K S K       = +  +  +  +   (15) 

R2T2C ( ) ( ) ( ) ( )
2 2

1 2 3 4 5 6/ / /i i i i i i iS K S K S K         = +  +  +  +  +    (16) 

 

where i  is the implied volatility of option i  with the strike price iK , the time to maturity i  and 

the underlying asset S . 

The first eight models, which use the exercise price directly as an independent variable are “absolute 

smile” models, and the remaining eight models, which use moneyness as the independent variable 

are “relative smile” models. For example, the A2T2C model runs with the intercept, exercise price, 

exercise price squared, time to maturity, time to maturity squared, and the product of exercise price 

and time to maturity, while the R2T2C model runs with the intercept, moneyness, moneyness squared, 

time to maturity, time to maturity squared, and the product of moneyness and time to maturity. More 

independent variables can be used, such as the cube of the time to maturity or the strike price 

(moneyness), but since the additional independent variables’ marginal effects are not significant, we 

consider only linear and squared terms as independent variables. 

The AHBS models are implemented using four steps. First, the implied volatility is estimated from 

each option. Then the regression coefficients ( 1, ,6)i i =  are estimated with implied volatility as 
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a dependent variable and exercise price (or moneyness) and time to maturity as independent variables. 

Next, theoretical implied volatility is obtained by substituting the regression coefficients estimated in 

the second step—the exercise price (or moneyness), time to maturity of each option, and the product 

of the exercise price (or moneyness) and time to maturity—into the AHBS model. Finally, the 

theoretical option price is derived by substituting the theoretical implied volatility calculated in the 

third step into the BS model (Equations (17)-(19)). 

 

( ) ( ) ( )1 2, ; r
tC t K S N d Ke N d −= −  (17) 

( ) ( ) ( )2 1, ; r
tP t K Ke N d S N d −= − − −  (18) 

  ( )2

1

ln / /2tS K r
d

 

 

+ +
= , −= 12 dd  (19) 

 

where ( ), ;C t K  and ( ), ;P t K  are the call and put option prices with strike price K  and time 

to maturity   at time t , respectively; tS  is the underlying asset value at time t ; r  is the risk-free 

interest rate;   is the volatility; and ( )N  is the cumulative standard normal distribution function. 

 

2.2 The Stochastic Volatility Option Pricing Model 

We consider Heston’s (1993) model, which assumes continuous-time stochastic volatility and that 

the volatility correlates with the underlying asset prices and shows a mean-reverting tendency. It is 

well suited for a benchmark because it offers a closed-form solution and has excellent pricing and 

hedging performance in several option markets. The diffusion processes for the underlying asset and 

the volatility are defined as in Equations (20) and (21). 

 

tStttt dWSdtSdS , +=  (20) 

( ) ttvtt dWdtd , +−=  (21) 

 

where ,S tdW  and ,v tdW  are wiener processes with a correlation of  , 
t

v  is the instantaneous 
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variance,   is the speed of adjustment to long-run variance  , and 
v

  is the volatility of the 

variance. Assuming the diffusion process of underlying assets and volatility as shown in equations (20) 

 

( ) 1 2, ; r
tC t K S P Ke P −= −  (22) 

  ( )
)2,1(

;,,
Re

1

2

1
0

ln

=











+= 


−

jd
i

vxfe
P

tj
Ki

j 








 (23) 

 

where  Re is the real part of the complex number, i  is an imaginary number, 

( ) ( ) ( ) xivDCvxf ttj  ++= ;;exp;,, , and ( ) ;C  and ( ) ;D  are the functions of  , 

 ,  ,   and tv . The put option price can be obtained from the put-call parity. 

In the SV model, volatility and structural parameters are not observable, so they are estimated daily. 

Since the SV model exists in the closed form solution, the most commonly used way of estimating 

parameters is a non-linear least squares method that minimizes the sum of squared errors between 

model and market prices. While parameters can also be estimated from a historical time series of 

underlying asset prices, historical data reflect only what has happened in the past, do not provide 

good estimates of future volatility, and cannot estimate risk premiums contained in the volatility. 

Cross-sectional option prices can be used to estimate the risk premium of risk factors, with the 

advantage of using the forward-looking information contained in the option prices. 

   To estimate the parameters, we minimize the sum of squared errors between the model and market 

prices, as shown in equation (24). 

 

2*
, ,

1

min
t

t

N

i t i t
i

O O


=

 −   ( Tt ,...,1= ) (24) 

 

where 
*
,tiO  is the model price of option i  at time t , 

tiO ,
 is the market price of option i  at time 

t , tN  is the number of options traded at time t , and T  is the number of trading days included in 

our sample. 
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2.3 The Portfolio of Volatility Smiles Method and the Volatility Surface Method 

The central purpose of this study is to compare two ways of using cross-sectional options data for 

estimating parameters. The Portfolio of Volatility Smiles method allows each set of parameters to be 

estimated separately for each maturity. Since we consider six expirations, from T1 to T6, six parameter 

sets are estimated per day. If the number of parameters in an option-pricing model is five, thirty (5 

parameters ×  6 maturities) parameters are estimated per day. This method has the advantage of 

applying the structure of volatility smile whose characteristics differ at each maturity. The Portfolio 

of Volatility Smiles method is useful if the volatility smile structure for each maturity is stable over 

time. The Volatility Surface method, on the other hand, allows a single parameter set that describes 

the entire volatility surface to be estimated. The volatility surface can be thought of as a portfolio of 

multiple volatility smiles. The Portfolio of Volatility Smiles method assumes that the volatility smile 

at each maturity is an individual asset and estimates the parameters that describe each volatility smile. 

Regardless of the time to maturity, the Volatility Surface method estimates a single parameter set that 

describes the entire volatility surface, which is assumed to be a single asset. This method has the 

advantage of considering the entire volatility surface structure at once. Therefore, if the volatility 

surface structure for all maturities is stable over time, the Volatility Surface method is useful. 

We examine several options-pricing models’ pricing and hedging performance using two ways of 

employing cross-sectional data. In the Portfolio of Volatility Smiles method, the parameters estimated 

at each time to maturity apply only to the next-day or next-week options with the corresponding time 

to maturity. In the Volatility Surface method, a single-parameter set, estimated regardless of expiration, 

is applied to all next-day or next-week options. 

 

3. Data 

The SPX (S&P 500 index) option data used in this paper are from the IVY DB database of 

OptionMetrics LLC. The data include end-of-day bid and ask quotes, implied volatilities, open interest, 

and daily trading volume for the SPX options traded on the Chicago Board Options Exchange from 
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January 4, 1996, through August 31, 2015. SPX option contracts have three advantages. First, it is easy 

to compare our results with those of extant research, as several extant studies analyze the S&P 500 

options markets, so implications can be easily derived by comparing our results with those of previous 

studies. Second, SPX option contracts trade options with various times to maturity. Although the 

trading volumes in emerging options markets are plentiful, they are concentrated in the short-term 

options, but a fully traded options market with a variety of maturities is required to conduct our study 

on the volatility surface. Third, the S&P 500 option is a European option, and a number of option 

pricing models have been derived to price European options. Evaluating the American options 

requires additional tweaking.  

The price of the option is calculated as the average of the best bid and ask quotes at the end of each 

trading day. We use all out-of-the-money (OTM)1 call and put options but exclude duplicates and 

missing values in bid or ask quotes, strike prices or times to maturity; options with less than seven 

days (to avoid liquidity bias) prices lower than 3/8 (to control for price discreteness) and prices that 

do not satisfy the no-arbitrage conditions (Bakshi, Cao and Chen, 1997, 2000; Kim and Kim, 2004, 2005; 

Choi and Ok, 2011; Choi, Jordan and Ok, 2012). 

Table 1 summarizes the option prices and numbers by dividing them into time to maturity and 

moneyness. We use six expressions of moneyness as S (S&P 500 index)/K (strike price) and six 

maturities, where T1 is the shortest expiration on each trading day and T6 is the sixth-shortest maturity 

on each trading day. The average option price for the entire sample is 15.0997, and our sample consists 

of 1,366,012 option prices. The options with the second-shortest maturity, T2, make up 23 percent of 

the sample, and the options with relatively short maturities, T1, T2, and T3, account for about 60 

percent of the sample. These percentages are consistent the fact high trading volume of short-term 

options. The options whose S/K is less than 0.94 or greater than 1.06, which are deep OTM options, 

 
1 In-the-money (ITM) options are not considered because their trading volumes are low, so information 

about them can be doubtful. Moreover, including them may cause duplicates from double counting 

since ITM calls and OTM puts are equivalent for a specified strike price according to put-call parity. 
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account for the largest percentage of the sample (about 67%). Among these, deep OTM put options 

with S/K greater than 1.06 account for about half of the sample, which is consistent with the high 

trading volume of OTM put options.  

Table 2 shows the average implied volatilities of options by time to maturity and moneyness. The 

table shows a humped pattern by the time to maturity. The average implied volatilities of T1 (with the 

shortest expiration) and T6 (with the longest expiration) are 0.2486 and 0.2465, respectively; the 

implied volatility increases from T1 to T2 and then decreases from T3 to T6. Implied volatility by the 

moneyness reveals an obvious pattern, as regardless of expiration, the implied volatility decreases as 

from deep OTM call options to near-the-money options and then increases from near-the-money 

options to deep OTM put options, revealing the so-called “volatility smile” or “volatility sneer.” Deep 

OTM put options with S/K greater than 1.06 have the highest implied volatility, which is in line with 

Black’s (1976) leverage effect hypothesis and the fact that the risk-neutral distribution estimated from 

option prices is negatively skewed. This “volatility smile” or “volatility sneer” phenomenon confirms 

the need for options-pricing models other than the BS model.   

 

4. Pricing and Hedging Performance 

We examine the in-sample pricing, out-of-sample pricing and hedging performance of several 

option pricing models. To compare pricing and hedging performance, we use mean absolute errors 

(MAE) and root mean squared errors (RMSE): 

 

*

1 1

1 1
( , ; ) ( , ; )

tNT

i i
t it

MAE O t K O t K
T N

 
= =

= −   (25) 

2*

1 1

1 1
( , ; ) ( , ; )

tNT

i i
t it

RMSE O t K O t K
T N

 
= =

 = −    (26) 

 

where 
tiO ,
 is the market price of option i  at time t , 

*
,tiO  is the model price of option i  at time 

t , tN  is the number of options traded at time t , and T  is the number of trading days included in 
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our sample. In the Portfolio of Volatility Smile method, tN  is the number of options with a specific 

time to maturity at time t , and in the Volatility Sneer method, tN  is the number of options at time 

t . 

The MAE measures the average pricing and hedging error of each option-pricing model, and the 

RMSE measures the volatility of pricing and hedging errors. If both the MAE and the RMSE of an 

option-pricing model are small, we can assume that the errors are clustered around zero, indicating 

that the model performs well. 

 

4.1 In-sample Pricing Performance 

Table 3 shows the mean and the standard errors of the parameter estimates for each model. The 

average and the standard deviation of R2s for the AHBS models are reported. In “absolute smile” 

approaches, the implied volatility is treated as a function of strike price (K) and the time to maturity 

(T) with higher-order terms and/or interaction terms. In “relative smile” approaches, the implied 

volatility is treated as a function of the moneyness (S/K) and the time to maturity (T) with higher-

order terms and/or interaction terms. For the AHBS models, each parameter is estimated using 

ordinary least squares. For the BS and SV models, each parameter is estimated by minimizing the sum 

of squared errors between the model and market option prices. 

Panel A shows the estimates of the parameters of the AHBS models. The coefficient for K or S/K is 

negative for the “absolute smile” approaches and positive for the “relative smile” approaches. This 

result is consistent with the results shown in Table 2, where the implied volatility increases as K 

decreases (as S/K increases). For the squared terms K2 and (S/K)2, the coefficient for the “absolute 

smile” approaches is positive and negative for the “relative smile” approaches. This result supports 

the concave property of implied volatility for K and its convex property for S/K. Consistent with 

decreasing implied volatility as the time to maturity increases, the coefficient for T is negative for both 

the “absolute smile” and the “relative smile” approaches. The coefficient for T2 is positive independent 

of the type of the AHBS model and is in line with the property of concave function of implied volatility 
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with T. The combination term, the product of K (or S/K) and T, is positive in the “absolute smile” 

approaches and negative in the “relative smile” approaches. Panel B shows the estimates of the 

parameters of the structural models. The average implied volatility of the BS model is approximated 

at about 19 percent, and taking the root of the variance estimate of the SV model, the volatility is 

estimated to be about 20 percent. The average correlation between stock index returns and volatility 

is negative, which demonstrates the sneer pattern of implied volatility and the shape of the negatively 

skewed risk-neutral distribution (Dennis and Mayhew, 2002). Similar estimates are shown for both the 

Portfolio of Volatility Smiles and the Volatility Surface methods. 

Table 4 reports in-sample pricing and one-day-ahead and one-week-ahead out-of-sample pricing. 

Each model is estimated every day during the sample period. In-sample pricing errors are calculated 

by applying the current estimated parameters to price the current options. In-sample pricing 

performance measures how well each option-valuation model explains the current market prices. As 

expected, the models with many parameters are more likely to explain the current options market than 

the models with few parameters. For example, in the regression analysis, the number of independent 

variables coincides with the increase in the R2 value that measures the explanatory power.  

In comparing the Portfolio of Volatility Smiles method and Volatility Surface method, we find that, 

regardless of the option-pricing model used, the Portfolio of Volatility Smiles method provides better 

in-sample pricing performance than the Volatility Surface method. This result seems obvious, as the 

Portfolio of Volatility Smiles method, which estimates parameters individually for each time to 

maturity, uses more parameters than the Volatility Surface method, which estimates a single 

parameter set irrespective of time to maturity for the same option sample. In this study, the option 

sample consists of six types of maturities (from T1 to T6). For example, the SV model with five 

parameters uses thirty parameters (5 parameters ×  6 types of maturities) in the Portfolio of Volatility 

Smiles method and just five parameters in the Volatility Surface method. This result is consistent with 

our conjecture that the models with a large number of parameters have better in-sample pricing 

performance.  
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We also find that, the more complex the model, the better the in-sample pricing performance. The 

SV model with the most parameters shows the smallest error, and the BS model with the smallest 

number of parameters shows the largest error, as expected in both the Portfolio of Volatility Smiles 

and the Volatility Surface methods. As the number of parameters increases, the models’ errors 

decrease. In the Portfolio of Volatility Smiles, A2 and R2 show better performance than A1 and R1. In 

the Volatility Surface method, in-sample pricing performance improves when the square term of the 

strike price (or moneyness) or the time to maturity is considered; that is, the error in A2T2 is smaller 

than the error in A1T1. Combining strike price (or moneyness) and time to maturity is the most 

obvious way to improve the in-sample pricing performance.  

Finally, we find that the “absolute smile” approaches have smaller errors than the “relative smile” 

approaches, as with previous studies. When considering the time to maturity factor along with the 

strike price or moneyness, we observe that the “absolute smile” approaches have excellent pricing 

performance. 

In conclusion, our study shows that the best in-sample pricing performance comes from using a 

large number of parameters, so the SV model with the largest number of parameters using the 

Portfolio of Volatility Smiles method that estimates the parameters individually for each time to 

maturity is the best. The results are the same whether the measure of error is MAE or RMSE. However, 

the question remains: will the SV model and the Portfolio of Volatility Smiles methods using many 

parameters continue to perform well in out-of-sample pricing or hedging without causing over-fitting 

problems? 

 

4.2 Out-of-sample Pricing Performance 

Next, we examine the out-of-sample pricing performance in Table 4. One-day (one-week) ahead 

out-of-sample pricing errors are calculated by applying the previous day’s (week’s) estimated 

parameters to price the current options. In in-sample pricing performance, an option-valuation model 

with a large number of parameters performs better than a model with a small number of parameters. 

However, these results can be caused by over-fitting problems. Put differently, an option-pricing 
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model that explains the current option prices may well be less likely to predict future option prices. 

For practical purposes, the predictability of future option prices can be more important than the 

explanatory power of current option prices. Out-of-sample pricing performance verifies how well an 

option-pricing model predicts the levels of future option prices. 

The Portfolio of Volatility Smiles method shows lower errors than the Volatility Surface method, 

confirming that the results of the in-sample pricing performance are consistently observed in the 

results of the out-of-sample pricing performance for both MAE and RMSE measures. 2  Then, 

regardless of the option-pricing model used, the longer the forecasting period, the larger the error. In 

the Portfolio of Volatility Smiles method, the one-day-ahead and one-week-ahead out-of-sample 

pricing errors of all the models increase 15 percent (23%) and 42 percent (45%), respectively, based on 

MAE (RMSE), compared to in-sample pricing errors. In the Volatility Surface method, one-day-ahead 

and one-week-ahead out-of-sample pricing errors increase by 8 percent (15%) and 26 percent (39%), 

respectively in terms of MAE (RMSE). The Volatility Surface method has fewer over-fitting problems 

than the Portfolio of Volatility Smiles method, suggesting that the Volatility Surface method depicts 

the entire volatility surface at once. The difference between the BS model and the best model decreases 

in the out-of-sample pricing: In the Portfolio of Volatility Smiles method, the ratio of the BS model to 

the SV model for MAE is 7.1321 for in-sample pricing errors, while the ratio of the BS model to the SV 

model and the A1 model decreases to 3.9893 and to 2.7929 for one-day-ahead and one-week-ahead 

out-of-sample errors, respectively. As the term of the out-of-sample pricing increases, the difference 

between the BS model and the best model decreases. In the Volatility Surface method, the ratios of the 

BS model to the SV model for MAE are 5.2586, 3.8803, and 2.7146 for in-sample, one-day-ahead out-

of-sample, and one-week-ahead out-of-sample pricing errors, respectively. 

In the Portfolio of Volatility Smiles method, the SV model with the largest number of parameters is 

the best model for one-day-ahead out-of-sample pricing performance. However, when the forecasting 

 
2 For the SV model, the Volatility Surface method shows better out-of-sample pricing performance 

than the Portfolio of Volatility Smiles method when the forecasting period is one week. 



15 

 

period increases from one day to one week, the A1 model, which is the simplest of the “absolute smile” 

approaches, performs best. In other words, the increased forecasting period reveals the over-fitting 

problem of the SV model, which is the leader in in-sample pricing and one-day-ahead out-of-sample 

pricing. On the other hand, in the Volatility Surface method, the SV shows the best performance in in-

sample, one-day-ahead and one-week-ahead out-of-sample pricing, so this method can alleviate the 

over-fitting problems that can occur as the forecasting period increases. 

In the AHBS models, the “absolute smile” approaches perform better than the “relative smile” 

approach in both the Portfolio of Volatility Smiles method and the Volatility Surface method, 

regardless of the forecasting period.3 As the number of parameters increases, the models’ errors 

decrease, and when the squared term of the strike price (or moneyness) is considered, out-of-sample 

pricing performance improves. The combination of the strike price (or moneyness) and the time to 

maturity improves the out-of-sample pricing performance the most, regardless of the forecasting 

period. However, the squared term of time to maturity generally does not significantly improve out-

of-sample pricing performance, and when the combination terms are considered together, the out-of-

sample pricing performance deteriorates.  

Table 5 reports one-day-ahead and one-week-ahead out-of-sample pricing errors in terms of the 

time to maturity, measured by mean absolute errors. As Table 1 shows, the short-term options with 

maturities of T1, T2, and T3 account for 60 percent of our sample, and the trading volume in the options 

market is concentrated in the short-term options. In addition, previous studies show that the BS 

model’s performance is poor in the short-term options, so the improvement of the alternative options-

pricing models is critical for these options. Therefore, the performance in short-term options is more 

important than that in long-term options.  

We find that the Portfolio of Volatility Smiles method performs generally better than the Volatility 

Surface method for all maturities. In the “absolute smile” approaches, the Portfolio of Volatility Smiles 

 
3 Because of these results, we do not report the results of the “relative smile” approaches that are 

inferior to the “absolute smile” approaches. 
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method performs consistently better than the Volatility Surface method,4 and in the SV model, the 

Portfolio of Volatility Smiles method outperforms the Volatility Surface method in one-day-ahead out-

of-sample pricing. However, in one-week-ahead out-of-sample pricing, the Volatility Surface method 

is superior to the Portfolio of Volatility Smiles method for all maturities. The results shown in Table 4 

are maintained regardless of expiration.  

The “absolute smile” approaches also show better performance than the SV model for the short-

term options in both the Portfolio of Volatility Smiles and the Volatility Surface methods. Kim (2009) 

and Kim and Song (2020), in analyzing the performance of the AHBS models in the short-term options, 

show that the “absolute smile” approach is superior to the SV model, and we confirm these results 

again.  

We also find that, generally, as the time to maturity increases from T1 to T6, the out-of-sample 

pricing errors increase regardless of the option-pricing model used. This result is consistent with the 

increasing nature of option prices as the time to maturity increases. However, some models have more 

errors in T1, the shortest expiration, than they do in other shorter expirations, T2 and T3. This result is 

consistent with the results of prior studies that report serious errors in pricing short-term options. 

Table 6 reports one-day-ahead and one-week-ahead out-of-sample pricing errors by moneyness, 

measured by mean absolute errors. As Table 1 shows, the deep OTM put options (S/K >= 1.06) account 

for half of our sample, and when combined with deep OTM call options (S/K < 0.94), they account for 

69 percent of the sample. In the options market, the trading volume is concentrated in the OTM options. 

In addition, previous studies show that the BS model’s performance is poor in the OTM options. Since 

the improvement of the alternative options-pricing models is essential for the OTM options, the out-

of-sample pricing performance in the OTM options is more important than the performance in the 

options with other moneyness. The Portfolio of Volatility Smiles method performs generally better 

than the Volatility Surface method for all moneyness: In “absolute smile” approaches, the Portfolio of 

 
4 In one-week-ahead out-of-sample pricing, the Volatility Surface method outperforms the Portfolio 

of Volatility Smiles method at the shortest expiration, T1. 
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Volatility Smiles method performs consistently better than the Volatility Surface method, and in the 

SV model, the Portfolio of Volatility Smiles method outperforms the Volatility Surface method in one-

day-ahead out-of-sample pricing. However, in one-week-ahead out-of-sample pricing, the Volatility 

Surface method outperforms the Portfolio of Volatility Smiles method. Thus, the results shown in 

Table 4 are maintained regardless of the moneyness. We also find that the “absolute smile” approaches 

are superior to other models in the OTM put options, and the SV model demonstrates competitive 

performance in the OTM call options. In particular, the performance improvement compared to the 

BS model is important in the OTM put options, so the excellence of the AHBS models is shown again. 

Finally, as the moneyness moves from OTM to near-the-money options (0.97 < S/K < 1.03), the errors 

increase regardless of the option-pricing model used because near-the-money options are more 

expensive than the OTM options. 

 

4.3 Hedging Performance 

The hedging performance is as important as the pricing performance in measuring the performance 

of option-pricing methods. If out-of-sample pricing predicts future levels of option prices, hedging 

predicts the volatility of future option prices. Among several methods to measure hedging 

performance, we use the hedging performance measure that Dumas, Fleming and Whaley (1998), 

Gemmill and Saflekos (2000), and Kim and Kim (2005) propose. Hedging errors are defined as the 

difference between the change in the market price and the change in the theoretical model price, as 

follows: 

 

Hedging Errors = 
*( , ; ) ( , ; )i iO t K O t K  −  (27) 

 

where ( , ; )iO t K  is the change in the reported option price from day t to day 1t + or 7t + , and 

*( , ; )iO t K  is the change in the model’s theoretical value. 
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Table 7 reports one-day-ahead and one-week-ahead hedging errors. The parameters and spot 

volatility implied by all options of the previous day or week are used to obtain the current day’s 

hedged portfolio. We find that the Portfolio of Volatility Smiles method generally outperforms the 

Volatility Surface method—these results are the same as those of in-sample and out-of-sample 

pricing5—and that, regardless of the options-pricing model and the forecasting period, the “absolute 

smile” approaches outperform the BS and SV models in both the Portfolio of Volatility Smiles and the 

Volatility Surface methods. These results are consistent with those of Kim (2009) and Kim and Song 

(2020). In addition, in the AHBS models, as the number of parameters increases, the hedging errors of 

the models decrease, and when the squared term of the strike price is considered, hedging 

performance improves. The combination of the strike price and the time to maturity is the key factor 

to improving the hedging performance, regardless of the forecasting period.  

Table 8 reports hedging errors by time to maturity, measured by mean absolute errors. For all 

models, the Portfolio of Volatility Smiles method is generally superior to the Volatility Surface method, 

regardless of maturity.6 The “absolute smile” approaches also perform consistently better than the BS 

and SV models for all maturities. Table 9 reports hedging errors by the moneyness. For all models, the 

Portfolio of Volatility Smiles method is generally superior to the Volatility Surface method, regardless 

of moneyness.7 

In sum, the Portfolio of Volatility Smiles method is superior to the Volatility Surface method in the 

hedging performance, and the “absolute smile” approaches outperform other models regardless of 

maturity and moneyness. 

 

5. Conclusion 

 
5 The exception is the SV model’s one-week-ahead hedging errors. 

6 The Volatility Surface method is superior to the Portfolio of Volatility Smiles method in one-week-

ahead hedging errors of the short-term options (T1, T2, and T3) for the SV model. 

7 The Volatility Surface method is superior to the Portfolio of Volatility Smiles method in the OTM 

put options (1.00 < S / K < 1.06) for the BS and SV models. 
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We examine the pricing and hedging performance of several options-pricing models using two 

parameter-estimation methods to employ cross-sectional options data with multiple maturities. The 

Portfolio of Volatility Smiles method allows each set of parameters to be estimated separately for each 

maturity and has the advantage of considering the structure of volatility smile whose characteristics 

differ at each maturity. The second method is the Volatility Surface method. Regardless of the time to 

maturity, a single parameter set that describes the entire volatility surface is estimated. This method 

enjoys the benefit of taking the entire volatility surface structure at once.  

The results are as follows. When pricing and hedging options with various times to maturity, the 

Portfolio of Volatility Smiles method generally outperforms the Volatility Surface method, irrespective 

of the option-pricing model used, maturity, and moneyness. In other words, considering the volatility 

smile at each maturity is more effective than employing all of the volatility surfaces at once. In in-

sample pricing and one-day-ahead out-of-sample pricing, the SV model performs best, but in one-

week-ahead out-of-sample pricing, the SV model is outperformed by the AHBS models, confirming 

that the over-fitting problem may occur in the SV model. As for the hedging performance, the AHBS 

models outperform the BS and SV models regardless of time to maturity or moneyness. Finally, the 

“absolute smile” approaches perform better than the “relative smile” approaches. 

We find that, overall, the Portfolio of Volatility Smiles method is superior to the Volatility Surface 

method. Using cross-sectional option data by maturity is more effective than using panel option data 

that employs both cross-section and time-series option data for pricing and hedging options. 
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Table 1: Options Data 

This table shows the average options prices and the number (in parentheses) by time-to-maturity and 

the moneyness of S&P 500 options. Six expressions of moneyness as S (S&P 500 index)/K (strike price) 

and six maturities, where T1 is the shortest expiration on each trading day and T6 is the sixth-shortest 

maturity on each trading day are used. 

  <0.94 0.94-0.97 0.97-1.00 1.00-1.03 1.03-1.06 >=1.06 Total 

T1 
2.2594 4.1378 11.613 13.9098 6.8526 2.4903 6.0115 

(18,377) (24,377) (33,638) (32,180) (28,485) (99,944) (237,001) 

T2 
3.5213 9.1208 23.1165 26.553 16.9139 4.6211 9.4339 

(43,561) (28,666) (29,716) (27,886) (24,387) (166,192) (320,408) 

T3 
5.4374 16.7295 33.4245 36.9905 26.3047 7.1233 13.4345 

(45,483) (20,772) (22,123) (20,378) (17,643) (135,322) (261,721) 

T4 
8.8094 27.666 45.7303 47.3428 35.7563 10.1754 17.1631 

(43,797) (13,212) (13,132) (12,375) (11,308) (104,724) (198,548) 

T5 
14.1678 44.4315 64.5972 62.588 50.0892 15.3063 23.4724 

(48,315) (10,196) (9,652) (9,329) (8,489) (92,081) (178,062) 

T6 
20.5171 61.9674 82.5792 77.3904 64.8239 20.5275 29.8087 

(49,376) (8,169) (8,062) (7,526) (7,091) (90,048) (170,272) 

Total 
10.1467 19.3049 31.8664 33.6822 24.2393 9.1591 15.0997 

(248,909) (105,392) (116,323) (109,674) (97,403) (688,311) (1,366,012) 
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Table 2: Implied Volatility 

This table shows the average implied volatilities of options by time-to-maturity and moneyness of S&P 

500 options. Six expressions of moneyness as S (S&P 500 index)/K (strike price) and six maturities, 

where T1 is the shortest expiration on each trading day and T6 is the sixth-shortest maturity on each 

trading day are used. 

 <0.94 0.94-0.97 0.97-1.00 1.00-1.03 1.03-1.06 >=1.06 Total 

T1 0.2643 0.1586 0.1520 0.1833 0.2094 0.3323 0.2486 

T2 0.1939 0.1430 0.1550 0.1889 0.2067 0.3186 0.2510 

T3 0.1733 0.1493 0.1593 0.1943 0.2093 0.3086 0.2442 

T4 0.1687 0.1537 0.1617 0.1996 0.2113 0.3047 0.2433 

T5 0.1681 0.1610 0.1694 0.2136 0.2222 0.3069 0.2445 

T6 0.1650 0.1629 0.1679 0.2168 0.2248 0.3054 0.2441 

Total 0.1802 0.1525 0.1578 0.1935 0.2112 0.3132 0.2465 
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Table 3: Parameters 

This table represents the mean and the standard errors (in parentheses) of the parameter estimates for 

each model. The average and the standard deviation of R2s for the AHBS models are reported. Models 

beginning with “A” represent the "absolute smile" approaches. Models beginning with “R” represent 

the "relative smile" approaches. In “absolute smile” approaches, the implied volatility is treated as a 

function of strike price (K) and the time-to-maturity (T) with higher-order terms and/or interaction 

terms. In “relative smile” approaches, its implied volatility is treated as a function of moneyness (S/K) 

and the time-to-maturity (T) with higher-order terms and/or interaction terms. For the AHBS models, 

each parameter is estimated using ordinary least squares every day. BSPortfolio of Volatility Smiles and SVPortfolio 

of Volatility Smiles are the Black-Scholes (1973) option pricing model and Heston’s (1993) option pricing 

model with the stochastic volatility using the Portfolio of Volatility Smiles method. BSVolatility Surface and 

SVVolatility Surface are the Black-Scholes (1973) option pricing model and Heston’s (1993) option pricing 

model with the stochastic volatility using the Volatility Surface method. For the BS and SV models, each 

parameter is estimated by minimizing the sum of squared errors between the model and market option 

prices every day. 

Panel A: Ad-Hoc Black Scholes Models 

  Intercept K or S/K K2 or (S/K)2 T T2 Combination R2 

A1 
0.7326 -0.0004     

0.9446 
(0.0015) (1.4270E-06)     

A2 
1.4152 -0.0017 5.8926E-07    

0.9609 
(0.0114) (2.1136E-05) (1.1714E-08)    

A1T1 
0.6409 -0.0004   -0.0145     

0.8527 
(0.0018) (1.6356E-06)   (0.0008)     

A1T1C 
0.8561 -0.0006   -0.4648   0.0004 

0.9196 
(0.0023) (2.5031E-06)   (0.0030)   (2.6556E-06) 

A1T2 
0.6422 -0.0004   -0.0285 0.0181   

0.8575 
(0.0019) (1.6471E-06)   (0.0023) (0.0023)   

A1T2C 
0.8632 -0.0006   -0.5084 0.0505 0.0004 

0.9240 
(0.0024) (2.5273E-06)   (0.0042) (0.0023) (2.6822E-06) 

A2T1 
0.7109 -0.0005 3.4616E-08 -0.0237     

0.8831 
(0.0047) (8.5001E-06) (5.5826E-09) (0.0009)     

A2T1C 
0.9627 -0.0007 7.5983E-08 -0.4639   0.0004 

0.9390 
(0.0037) (5.7685E-06) (3.6975E-09) (0.0030)   (2.4651E-06) 

A2T2 
0.7159 -0.0005 3.6736E-08 -0.0464 0.0284   

0.8882 
(0.0048) (8.6301E-06) (5.6665E-09) (0.0025) (0.0023)   

A2T2C 
0.9762 -0.0008 8.1178E-08 -0.5177 0.0631 0.0004 

0.9437 
(0.0038) (5.7082E-06) (3.6338E-09) (0.0042) (0.0023) (2.5291E-06) 

R1 
-0.2309 0.4267     

0.9405 
(0.0016) (0.0015)     

R2 
-0.0924 0.1043 0.1833    

0.9416 
(0.0093) (0.0187) (0.0094)    

R1T1 
-0.0778 0.2942   -0.0416     

0.8000 
(0.0014) (0.0008)   (0.0009)     

R1T1C 
-0.3213 0.5180   0.4416   -0.4374 

0.9009 
(0.0020) (0.0014)   (0.0027)   (2.4581E-03) 
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R1T2 
-0.0767 0.2941   -0.0498 0.0079   

0.8059 
(0.0015) (0.0008)   (0.0026) (0.0025)   

R1T2C 
-0.3187 0.5253   0.3701 0.1115 -0.4510 

0.9078 
(0.0021) (0.0015)   (0.0031) (0.0025) (0.0027) 

R2T1 
-0.4456 0.8825 -0.2294 -0.0224     

0.8799 
(0.0044) (0.0065) (0.0027) (0.0009)     

R2T1C 
-0.5219 0.8814 -0.1630 0.3462   -0.3419 

0.9290 
(0.0037) (0.0052) (0.0020) (0.0021)   (0.0019) 

R2T2 
-0.4395 0.8783 -0.2275 -0.0545 0.0407   

0.8851 
(0.0045) (0.0066) (0.0028) (0.0024) (0.0023)   

R2T2_C 
-0.5138 0.8770 -0.1584 0.2863 0.0967 -0.3551 

0.9349 
(0.0038) (0.0053) (0.0020) (0.0028) (0.0025) (0.0021) 

 

Panel B: Structural Models 

   

 
BSPortfolio of Volatility Smiles 

0.1891 

(0.0004) 

BSVolatility Surface 
0.1906  

(0.0008)  

         
t  

SVPortfolio of Volatility Smiles 
0.7975 0.1292 0.7606 -0.6957 0.0409 

(0.0153) (0.0021) (0.0047) (0.0009) (0.0006) 

SVVolatility Surface 
0.8840 0.1049 0.7864 -0.7538 0.0460 

(0.0165) (0.0015) (0.0050) (0.0011) (0.0007) 
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Table 4: Pricing Performance 

This table reports in-sample pricing, one-day-ahead and one-week-ahead out-of-sample pricing errors 

for the S&P 500 options. Each model is estimated every day during the sample period. In-sample pricing 

errors are calculated by applying the current estimated parameters to price the current options. One- 

day-ahead (one-week-ahead) out-of-sample pricing errors are calculated by applying the previous 

day’s (week’s) estimated parameters to price the current options. In the Portfolio of Volatility Smiles 

method, each set of parameters is estimated separately for each maturity, and in the Volatility Surface 

method, a single parameter set is estimated for every maturity. Models beginning with “A” represent 

the "absolute smile" approaches. Models beginning with “R” represent the "relative smile" approaches. 

In “absolute smile” approaches, the implied volatility is treated as a function of strike price (K) and the 

time-to-maturity (T) with higher-order terms and/or interaction terms. In “relative smile” approaches, 

its implied volatility is treated as a function of moneyness (S/K) and the time-to-maturity (T) with 

higher-order terms and/or interaction terms. BS is the Black-Scholes (1973) option pricing model. SV is 

Heston’s (1993) option pricing model with the stochastic volatility. Panel A represents mean absolute 

errors and Panel B does root mean squared errors.  

Panel A: Mean Absolute Errors 

  Portfolio of Volatility Smiles   Volatility Surface 
 In One Day One Week   In One Day One Week 

BS 5.5894 5.6456 5.7897 BS 5.7540 5.7855 5.8746 

A1 1.4455 1.6473 2.0597 

A1T1 2.3715 2.4695 2.7315 

A1T1C 1.7737 1.9013 2.2426 

A1T2 2.3124 2.4505 2.7804 

A1T2C 1.7322 1.9049 2.3330 

A2 1.2875 1.5704 2.0730 

A2T1 2.2031 2.3015 2.5643 

A2T1C 1.6886 1.8306 2.1918 

A2T2 2.1374 2.2753 2.6034 

A2T2C 1.6566 1.8387 2.2826 

R1 2.2524 2.5113 3.0511 

R1T1 3.3597 3.5102 3.9063 

R1T1C 2.5470 2.7444 3.2335 

R1T2 3.3112 3.5106 3.9988 

R1T2C 2.5699 2.8016 3.3868 

R2 1.4386 1.9163 2.7321 

R2T1 2.3112 2.5335 3.0499 

R2T1C 1.8712 2.1285 2.7037 

R2T2 2.2548 2.5074 3.0798 

R2T2C 1.8767 2.1646 2.8293 

SV 0.7837 1.4152 2.4423 SV 1.0942 1.4910 2.1641 
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Panel B: Root Mean Squared Errors 

  Portfolio of Volatility Smiles   Volatility Surface 
 In One Day One Week   In One Day One Week 

BS 7.4891 7.6555 8.0590 BS 7.7672 7.8831 8.1964 

A1 2.9121 3.2127 3.6787 

A1T1 3.9577 4.1897 4.7129 

A1T1C 3.2424 3.5676 4.2808 

A1T2 3.8529 4.4920 5.1738 

A1T2C 3.3188 4.4604 5.6576 

A2 2.4360 3.3506 3.8094 

A2T1 3.7296 3.9901 4.5321 

A2T1C 3.0746 3.5497 4.5440 

A2T2 3.5806 4.1953 4.9200 

A2T2C 3.1493 4.3633 5.8895 

R1 3.9364 4.3311 5.0842 

R1T1 5.4015 5.7306 6.5432 

R1T1C 4.2792 4.6894 5.6364 

R1T2 5.3357 5.9889 6.9899 

R1T2C 4.4988 5.3941 7.1043 

R2 2.7102 4.6721 5.6512 

R2T1 3.9250 4.3443 5.2845 

R2T1C 3.1960 3.6963 4.7385 

R2T2 3.7487 4.5100 5.5630 

R2T2C 3.2732 4.3355 5.9116 

SV 1.5826 2.6280 4.2729 SV 1.9904 2.5907 3.7374 
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Table 5: Pricing Performance by Maturity 

This table reports one-day-ahead and one-week-ahead out-of-sample pricing errors in terms of the time to maturity, measured by mean absolute errors. 

One-day-ahead (one-week-ahead) out-of-sample pricing errors are calculated by applying the previous day’s (week’s) estimated parameters to price the 

current options. In the Portfolio of Volatility Smiles method, each set of parameters is estimated separately for each maturity, and in the Volatility Surface 

method, a single parameter set is estimated for every maturity. Six expressions of moneyness as S (S&P 500 index)/K (strike price) and six maturities, where 

T1 is the shortest expiration on each trading day and T6 is the sixth-shortest maturity on each trading day are used. Models beginning with “A” represent 

an "absolute smile" approaches. In “absolute smile” approaches, the implied volatility is treated as a function of strike price (K) and the time-to-maturity (T) 

with higher-order terms and/or interaction terms. BS is the Black-Scholes (1973) option pricing model. SV is Heston’s (1993) option pricing model with the 

stochastic volatility. Panel A and Panel B represent one-day-ahead and one-week-ahead out-of-sample pricing performance, respectively.  

Panel A: One-day-ahead Out-of-Sample Pricing 

  Portfolio of Volatility Smiles   Volatility Surface 

  T1 T2 T3 T4 T5 T6   T1 T2 T3 T4 T5 T6 

BS 2.1242 3.5442 4.9161 6.4370 8.7315 11.4726 BS 2.4390 3.6965 4.9912 6.4850 8.8042 11.6232 

A1 0.9809 1.0130 1.2870 1.7567 2.4901 3.3132 

A1T1 1.9049 2.0527 2.0217 1.9606 2.8597 4.9138 

A1T1C 1.1711 1.1905 1.4735 1.8264 2.4252 4.4522 

A1T2 1.9576 2.0418 1.8754 1.8180 2.8452 5.1147 

A1T2C 1.2663 1.1794 1.3108 1.7260 2.4445 4.7165 

A2 1.2026 0.8984 1.1971 1.5970 2.2999 3.1267 

A2T1 1.8022 1.8675 1.7821 1.7384 2.5996 4.9561 

A2T1C 1.1333 1.0628 1.2802 1.6542 2.3383 4.7669 

A2T2 1.8630 1.8591 1.6385 1.6357 2.7364 4.8746 

A2T2C 1.2436 1.0531 1.1367 1.6145 2.4714 4.8237 

SV 1.1161 1.0435 1.1918 1.3936 1.8510 2.4434 SV 1.1811 1.0998 1.2001 1.4525 1.9522 2.6686 
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Panel B: One-week-ahead Out-of-Sample Pricing 

  Portfolio of Volatility Smiles   Volatility Surface 

  T1 T2 T3 T4 T5 T6   T1 T2 T3 T4 T5 T6 

BS 2.3780 3.7125 5.0455 6.5412 8.8187 11.5477 BS 2.5604 3.8268 5.1004 6.5456 8.8357 11.6524 

A1 1.5399 1.3797 1.6786 2.1539 2.80831 3.6777 

A1T1 2.0394 2.2332 2.2449 2.2608 3.2458 5.3912 

A1T1C 1.3648 1.4579 1.7196 2.0369 2.8521 5.3471 

A1T2 2.1030 2.2282 2.1407 2.1617 3.1670 6.0630 

A1T2C 1.4590 1.4470 1.6220 2.0088 2.8366 6.1606 

A2 2.2400 1.2997 1.6037 1.9992 2.6688 3.4795 

A2T1 1.9423 2.0620 2.0278 2.0468 2.9938 5.3538 

A2T1C 1.3291 1.3556 1.5648 1.8967 2.7758 5.6634 

A2T2 2.0162 2.0589 1.9172 1.9659 2.9919 5.8368 

A2T2C 1.4399 1.3473 1.4786 1.9021 2.8220 6.3308 

SV 2.2945 1.9313 2.1434 4.1745 2.9399 3.5540 SV 1.6454 1.7635 1.9623 2.1631 2.6669 3.4255 
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Table 6: Pricing Performance by Moneyness 

This table reports one-day-ahead and one-week-ahead out-of-sample pricing errors by moneyness, measured by mean absolute errors. One-day-ahead (one-

week-ahead) out-of-sample pricing errors are calculated by applying the previous day’s (week’s) estimated parameters to price the current options. In the 

Portfolio of Volatility Smiles method, each set of parameters is estimated separately for each maturity, and in the Volatility Surface method, a single 

parameter set is estimated for every maturity. Six expressions of moneyness as S (S&P 500 index)/K (strike price) are used. Models beginning with “A” 

represent an "absolute smile" approaches. In “absolute smile” approaches, the implied volatility is treated as a function of strike price (K) and the time-to-

maturity (T) with higher-order terms and/or interaction terms. BS is the Black-Scholes (1973) option pricing model. SV is Heston’s (1993) option pricing 

model with the stochastic volatility. Panel A and Panel B represent one-day-ahead and one-week-ahead out-of-sample pricing performance, respectively.  

Panel A: One-day-ahead Out-of-Sample Pricing 

  Portfolio of Volatility Smiles   Volatility Surface 
 <0.94 0.94-0.97 0.97-1.00 1.00-1.03 1.03-1.06 >=1.06  <0.94 0.94-0.97 0.97-1.00 1.00-1.03 1.03-1.06 >=1.06 

BS 6.8549 5.8585 4.5397 4.6776 6.4159 5.4077 BS 6.7538 6.4634 5.6211 4.7087 6.1030 5.4861 

A1 2.0619 3.1942 4.3487 2.0083 1.5687 0.7576 

A1T1 2.7644 4.4246 6.0670 3.4456 2.4445 1.3037 

A1T1C 2.3286 3.2534 4.7726 2.2496 1.7352 1.0226 

A1T2 2.7600 4.3947 5.9997 3.4376 2.4410 1.2853 

A1T2C 2.5318 3.2647 4.6788 2.4862 1.8441 0.9172 

A2 1.5328 2.7241 3.7238 2.2173 1.7472 0.9153 

A2T1 2.4576 3.7614 5.3946 3.4588 2.4466 1.2939 

A2T1C 1.9426 2.8196 4.2319 2.5137 1.9615 1.1056 

A2T2 2.4164 3.7090 5.3192 3.4829 2.4488 1.2734 

A2T2C 2.1766 2.8122 4.1367 2.7805 2.0961 0.9926 

SV 1.1836 1.7795 2.9448 2.7983 1.8933 0.8966 SV 1.2279 1.9074 3.092 2.9077 1.9604 0.9598 
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Panel B: One-week-ahead Out-of-Sample Pricing 

  Portfolio of Volatility Smiles   Volatility Surface 

  <0.94 0.94-0.97 0.97-1.00 1.00-1.03 1.03-1.06 >=1.06  <0.94 0.94-0.97 0.97-1.00 1.00-1.03 1.03-1.06 >=1.06 

BS 6.9027 6.1100 5.1476 5.2797 6.5935 5.4141 BS 6.7604 6.6538 5.9995 5.1714 6.2202 5.4769 

A1 2.3567 3.4290 4.5033 2.6827 2.1676 1.2153 

A1T1 2.9962 4.5188 6.1020 3.9020 2.9360 1.5774 

A1T1C 2.7767 3.4190 4.7978 2.7682 2.2425 1.3539 

A1T2 3.0890 4.5424 6.0874 3.9709 3.0102 1.6183 

A1T2C 3.1730 3.5766 4.8341 3.0551 2.4190 1.2891 

A2 1.9140 2.9800 3.9124 2.8340 2.3138 1.5256 

A2T1 2.7562 3.9367 5.4767 3.8653 2.8806 1.5408 

A2T1C 2.5172 3.0324 4.3032 2.9771 2.4349 1.4293 

A2T2 2.8074 3.9425 5.4502 3.9337 2.9388 1.5844 

A2T2C 3.0159 3.1841 4.3417 3.2697 2.5958 1.3300 

SV 2.1561 3.1629 4.4391 4.4576 3.4858 1.6297 SV 1.8689 2.813 4.0441 3.8355 2.9122 1.4819 
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Table 7: Hedging Performance 

This table reports one-day-ahead and one-week-ahead hedging errors for the S&P 500 options. Hedging 

errors are defined as the difference between the change in the market price and the change in the 

theoretical model price. The parameters and spot volatility implied by all options of the previous day 

or week are used to obtain the current day’s hedged portfolio. In the Portfolio of Volatility Smiles 

method, each set of parameters is estimated separately for each maturity, and in the Volatility Surface 

method, a single parameter set is estimated for every maturity. Models beginning with “A” represent 

an "absolute smile" approaches. In “absolute smile” approaches, the implied volatility is treated as a 

function of strike price (K) and the time-to-maturity (T) with higher-order terms and/or interaction 

terms. BS is the Black-Scholes (1973) option pricing model. SV is Heston’s (1993) option pricing model 

with the stochastic volatility. Panel A represents mean absolute errors and Panel B represents root mean 

squared errors.  

Panel A: Mean Absolute Errors 

Portfolio of Volatility Smiles Volatility Surface 
 One Day One Week   One Day One Week 

BS 0.9139 1.7471 BS 0.9188 1.7751 

A1 0.6360 1.1500 

A1T1 0.6810 1.2573 

A1T1C 0.6522 1.1919 

A1T2 0.6796 1.2573 

A1T2C 0.6524 1.1975 

A2 0.6364 1.1396 

A2T1 0.6710 1.2445 

A2T1C 0.6511 1.1915 

A2T2 0.6684 1.2420 

A2T2C 0.6507 1.1962 

SV 0.9865 1.8325 SV 0.9924 1.8255 

 

Panel B: Root Mean Squared Errors 

Portfolio of Volatility Smiles Volatility Surface 
 One Day One Week   One Day One Week 

BS 1.4811 2.7247 BS 1.5018 2.7701 

A1 1.1346 1.9866 

A1T1 1.2063 2.1243 

A1T1C 1.1720 2.0417 

A1T2 1.1998 2.1187 

A1T2C 1.1705 2.0591 

A2 1.1219 1.9435 

A2T1 1.1803 2.0935 

A2T1C 1.1578 2.0303 

A2T2 1.1705 2.0836 

A2T2C 1.1534 2.0458 

SV 1.8234 3.2433 SV 1.8296 3.2276 
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Table 8: Hedging Performance by Maturity 

This table reports one-day-ahead and one-week-ahead hedging errors by time to maturity, measured by mean absolute errors. Hedging errors are defined 

as the difference between the change in the market price and the change in the theoretical model price. The parameters and spot volatility implied by all 

options of the previous day or week are used to obtain the current day’s hedged portfolio. In the Portfolio of Volatility Smiles method, each set of parameters 

is estimated separately for each maturity, and in the Volatility Surface method, a single parameter set is estimated for every maturity. Six maturities, where 

T1 is the shortest expiration on each trading day and T6 is the sixth-shortest maturity on each trading day are used. Models beginning with “A” represent 

an "absolute smile" approaches. In “absolute smile” approaches, the implied volatility is treated as a function of strike price (K) and the time-to-maturity (T) 

with higher-order terms and/or interaction terms. BS is the Black-Scholes (1973) option pricing model. SV is Heston’s (1993) option pricing model with the 

stochastic volatility. Panel A and Panel B represent one-day-ahead and one-week-ahead hedging performance, respectively. 

Panel A: One-day-ahead Hedging 

  Portfolio of Volatility Smiles   Volatility Surface 

  T1 T2 T3 T4 T5 T6   T1 T2 T3 T4 T5 T6 

BS 0.8074 0.8630 0.8961 0.9205 1.0044 1.0787 BS 0.8193 0.8566 0.8956 0.9253 1.0178 1.0953 

A1 0.5721 0.5715 0.6074 0.6396 0.7259 0.7894 

A1T1 0.7008 0.6586 0.6552 0.6496 0.7020 0.7510 

A1T1C 0.6306 0.5926 0.6102 0.6314 0.7173 0.8151 

A1T2 0.7049 0.6599 0.6499 0.6426 0.6989 0.7512 

A1T2C 0.6361 0.5918 0.6034 0.6244 0.7158 0.8308 

A2 0.5704 0.5754 0.6115 0.6401 0.7210 0.7856 

A2T1 0.6903 0.6481 0.6449 0.6402 0.6918 0.7421 

A2T1C 0.6283 0.5916 0.6094 0.6292 0.7142 0.8184 

A2T2 0.6956 0.6495 0.6386 0.6316 0.6872 0.7360 

A2T2C 0.6358 0.5914 0.6015 0.6204 0.7104 0.8320 

SV 0.8068 0.8870 0.9743 1.0073 1.1409 1.2495 SV 0.8155 0.8902 0.9779 1.0152 1.1502 1.2559 
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Panel B: One-week-ahead Hedging 

  Portfolio of Volatility Smiles   Volatility Surface 

  T1 T2 T3 T4 T5 T6   T1 T2 T3 T4 T5 T6 

BS 1.4499 1.6437 1.7808 1.7456 1.9657 2.1244 BS 1.4943 1.6356 1.7728 1.7953 2.0381 2.1831 

A1 0.9481 1.0094 1.1355 1.1686 1.3911 1.5027 

A1T1 1.1839 1.1739 1.2281 1.2156 1.3846 1.5046 

A1T1C 1.0246 1.0553 1.1474 1.1852 1.4029 1.5841 

A1T2 1.1937 1.1788 1.2176 1.2033 1.3888 1.5060 

A1T2C 1.0381 1.0472 1.1256 1.1698 1.4294 1.6546 

A2 0.9045 1.0076 1.1412 1.1655 1.3714 1.4974 

A2T1 1.1600 1.1540 1.2120 1.2071 1.3776 1.5190 

A2T1C 1.0141 1.0455 1.1401 1.1832 1.4106 1.6252 

A2T2 1.1723 1.1600 1.1999 1.1930 1.3724 1.5081 

A2T2C 1.0315 1.0411 1.1195 1.1661 1.4257 1.6891 

SV 1.4562 1.6055 1.8602 1.8578 2.1912 2.4286 SV 1.3450 1.5893 1.8424 1.9140 2.2508 2.4427 
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Table 9: Hedging Performance by Moneyness 

This table reports one-day-ahead and one-week-ahead hedging errors by moneyness, measured by mean absolute errors. Hedging errors are defined as the 

difference between the change in the market price and the change in the theoretical model price. The parameters and spot volatility implied by all options 

of the previous day or week are used to obtain the current day’s hedged portfolio. In the Portfolio of Volatility Smiles method, each set of parameters is 

estimated separately for each maturity, and in the Volatility Surface method, a single parameter set is estimated for every maturity. Six expressions of 

moneyness as S (S&P 500 index)/K (strike price) are used. Models beginning with “A” represent an "absolute smile" approaches. In “absolute smile” 

approaches, the implied volatility is treated as a function of strike price (K) and the time-to-maturity (T) with higher-order terms and/or interaction terms. 

BS is the Black-Scholes (1973) option pricing model. SV is Heston’s (1993) option pricing model with the stochastic volatility. Panel A and Panel B represent 

one-day-ahead and one-week-ahead hedging performance, respectively. 

Panel A: One-day-ahead Hedging 

  Portfolio of Volatility Smiles   Volatility Surface 
 <0.94 0.94-0.97 0.97-1.00 1.00-1.03 1.03-1.06 >=1.06  <0.94 0.94-0.97 0.97-1.00 1.00-1.03 1.03-1.06 >=1.06 

BS 1.2310 1.1675 1.1265 1.0243 0.9937 0.7028 BS 1.2077 1.2351 1.1703 1.0171 0.9665 0.7083 

A1 0.7224 0.9423 1.0724 0.9683 0.8217 0.4169 

A1T1 0.8174 1.1378 1.1743 0.9711 0.8298 0.4248 

A1T1C 0.7556 1.0065 1.1162 0.9734 0.8286 0.4196 

A1T2 0.8052 1.1385 1.1772 0.9718 0.8298 0.4257 

A1T2C 0.7551 1.0021 1.1221 0.9745 0.8300 0.4195 

A2 0.7047 0.9476 1.0730 0.9723 0.8270 0.4217 

A2T1 0.7755 1.1104 1.1661 0.9718 0.8310 0.4253 

A2T1C 0.7369 1.0019 1.1142 0.9749 0.8333 0.4242 

A2T2 0.7576 1.1110 1.1692 0.9724 0.8313 0.4259 

A2T2C 0.7316 0.9980 1.1205 0.9762 0.8353 0.4245 

SV 0.916 1.475 1.8272 1.6815 1.4453 0.6415 SV 0.9513 1.5651 1.8427 1.5986 1.3884 0.6468 
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Panel B: One-week-ahead Hedging 

  Portfolio of Volatility Smiles   Volatility Surface 

  <0.94 0.94-0.97 0.97-1.00 1.00-1.03 1.03-1.06 >=1.06  <0.94 0.94-0.97 0.97-1.00 1.00-1.03 1.03-1.06 >=1.06 

BS 2.2875 1.9643 1.8148 1.8963 1.8958 1.4821 BS 2.2950 2.1288 1.9155 1.8889 1.8479 1.4988 

A1 1.3019 1.5467 1.6854 1.7000 1.5053 0.8380 

A1T1 1.5230 1.9350 1.9304 1.7607 1.5995 0.8631 

A1T1C 1.3989 1.6762 1.7796 1.7467 1.5540 0.8497 

A1T2 1.5002 1.9364 1.9437 1.7631 1.6054 0.8680 

A1T2C 1.4045 1.6746 1.8099 1.7583 1.5748 0.8500 

A2 1.2535 1.5463 1.6783 1.6979 1.4932 0.8376 

A2T1 1.4396 1.8968 1.9235 1.7598 1.6060 0.8737 

A2T1C 1.3584 1.6732 1.7823 1.7444 1.5643 0.8618 

A2T2 1.4031 1.8984 1.9387 1.7621 1.6115 0.8782 

A2T2C 1.3540 1.6722 1.8139 1.7579 1.5864 0.8633 

SV 1.6351 2.5235 3.2242 3.1379 2.7897 1.2823 SV 1.7093 2.672 3.156 3.004 2.6871 1.2941 

 


