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1 Introduction

1.1 Background

We are experiencing the unstoppable technological revolution and emerging new forms

of work driven by artificial intelligence and big data analysis. Frey and Osborne (2017)

demonstrate that 47% of jobs in the U.S. runs the risk of being automated, thereby disrupt-

ing labor markets and affecting workers negatively in the long run. Potentially catastrophic

loss of income is an omnipresent risk. It increases an individual’s concern about future in-

come uncertainty, so many people face the challenge of determining how to continue being

able to afford what they can currently afford, i.e., how to attain a smooth profile of future

consumption.1

Our focus is to generalize Friedman’s (1957) permanent income hypothesis (PIH) with

a large, negative income shock (LNIS) and then to evaluate whether the generalized frame-

work can explain how people would respond to the LNIS to increase their resilience to it

through the lens of their precautionary savings.2 Having generalized the PIH with the

1In the US, 44% of households could not cover an emergency expense of only $400, so they will struggle

if they experience an unexpected hardship (Federal Reserve report, 2017). For more details, refer to

“Report on the Economic Well-Being of U.S. Households in 2016” published by Board of Governors of

the Federal Reserve System on May 2017. In the European Union, approximately 218 million people are

experiencing earnings insecurity and volatility and struggling to ensure that future consumption needs can

be met (European Commission statistics, 2017). For more details, refer to EU Statistics on Income and

Living Conditions (EU-SILC 2017).
2As to individual savings behavior, the substantial portion of US and China households savings is driven

by precautionary reasons (Choi et al., 2017). In our equilibrium model, the precautionary savings could
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LNIS, we then examine its effect on interest rates by using a general equilibrium analy-

sis. For analytically tractable general equilibrium analysis, we consider a pure exchange

economy in the type of Lucas (1978). The generalization is that a representative agent’s

aggregate output is exposed to the LNIS. To investigate the effects of the LNIS in our

equilibrium setting, we have derived Euler equation and general equilibrium quantities in

closed-form.

1.2 Contribution

We make the following two contributions in this paper.

• The precautionary savings could increase as wealth increases (Figure 2 in Section 5).

• The LNIS could influence a decrease in interest rate (Theorem 4.2 in Section 4; Figure

5 in Section 5).

• The LNIS significantly improves our equilibrium model’s ability to match the eq-

uity premium and risk-free rate of the century-long sample (1891-1994) (Figure 7 in

Section 5).

Firstly, we generalize the PIH to include the LNIS and quantify the required amount

of savings that should be amassed for precautionary reasons (or precautionary savings).

Contrary to the predictions of Bewley (1977) and Campbell (1987), an income shock would

have significant effects on the precautionary savings of rich people. We find that the

correspond to a decrease in the subjective discount rate, implying a high savings rate and low interest rate.
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possibility of the LNIS increases the precautionary savings as wealth increases, thereby

explaining high savings rates of the wealthy rather than negative savings rates predicted by

Bewley (1977) and Campbell (1987). Overall, relative to low-wealth people, high-wealth

people can save more thanks to their affordability to amass the required precautionary

savings for consumption smoothing.

Secondly, in the derived Euler equation, we show that the amount of present con-

sumption the agent would be willing to give up now to receive one more unit of future

consumption becomes larger than without the LNIS. Indeed, in the presence of the LNIS,

the derived Arrow-Debreu price (or shadow price) increases and its expected return de-

creases by the amount of risk premium that is associated with the LNIS. Accordingly,

the agent’s demand for precautionary savings is sufficiently strong making her save at a

high rate and thus lowering the equilibrium interest rate significantly, which is particularly

relevant to today’s low-interest-rate environment.

Finally, the equity premium and risk-free rate are determined in equilibrium and

matched up with the century-long sample (1891-1994). Reasonable parameters of risk

aversion generate a 3% to 6% equity premium and a 1% to 2.5% risk-free rate. Compared

to the standard asset pricing model without the LNIS, ours with the LNIS generates a sig-

nificantly low risk-free rate even with very small possibilities of the LNIS. Further, contrast

to the standard model, in our model high values of risk aversion no longer counterfactu-

ally generate a high risk-free interest rate, thereby avoiding the risk-free rate puzzle (Weil,

1990). Rather, an increase in risk aversion can result in a decrease in risk-free rate with the

LNIS. Intuitively, the LNIS faced by individuals cause them likely to reduce consumption
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to secure extra reserves as a precaution or to finance consumption needs by using their

savings. Such a conservative decision discourages equity investment, so the equity premium

increases and the risk-free rate decreases.

1.3 Literature Review and Outline

Permanent Income Hypothesis. Existing theories on household consumption cannot

explain recent empirical findings on individual savings behavior. The permanent income

hypothesis (PIH) of Friedman (1957) suggests that people should save now to prepare

for the aftermath of a permanent decline in income (income shock), which has been for-

mulated rigorously by Bewley (1977) and Campbell (1987). The PIH demonstrates that

consumption is proportional to the sum of financial wealth and human capital, which is the

discounted expected value of future income at the risk-free interest rate. So, the changes in

marginal consumption with financial wealth are constant, thereby leading to consumption

smoothing regardless of wealth levels. However, many people are not ready to meet their

future consumption needs if an income shock occurs. Thus, when future disastrous income

shocks are possible, Friedman’s model may not be applicable.

Individual Savings. According to the PIH predictions of Bewley (1977) and Campbell

(1987), an income shock is less likely to affect the precautionary savings of people who are

at the higher end of wealth. This is because consumption of the wealthy can be financed

mainly by wealth, without resorting to income. Intuitively, the ability to self-insure against
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the income shock improves when wealth is large, so the precautionary savings decrease as

wealth increases and then turns negative if wealth is large relative to income. However,

empirical and anecdotal evidence shows that positive and even high savings rates are very

common amongst wealthy people, and are they well known amongst financial advisors.

Indeed, wealthy people are inclined to exhibit high savings rates as follows: a positive

relation between savings rates and income (Dynan et al., 2004), entrepreneurship purposes

for entering and expanding business (Buera, 2009), out-of-pocket medical expenses patterns

(De Nardi et al., 2010), the mix of bequests and human capital, entrepreneurship, and

medical-expense risk (De Nardi and Fella, 2017).

Optimal Consumption and Investment. Our work sits squarely within the optimal

consumption and investment framework. Starting from the seminal work of Merton (1969,

1971), many studies have incorporated nontradable income in the framework.3 Importantly,

the (undiversifiable) labor income risk has become a standard element in studies of optimal

strategies. When modeling and interpreting labor income shocks, standard literature has

assumed log-normality with a Brownian motion.4 However, large and negative income

shocks affect individual life-cycle strategies significantly, and cause substantial deviations

from log-normality (Guvenen et al., 2015). Furthermore, models that use the Brownian

3For instance, refer to Farhi and Panageas (2007), Choi et al. (2008), and Jang et al. (2013).
4For example, Merton (1971), Bodie et al. (1992), Duffie et al. (1997), Koo (1998), Cocco et al. (2005),

Gomes and Michaelides (2005), Polkovnichenko (2007), Benzoni et al. (2007), Wachter and Yogo (2010),

Dybvig and Liu (2010), Munk and Sørensen (2010), Lynch and Tan (2011a, 2011b), Calvet and Sodini

(2014), Ahn et al. (2019), and Jang et al. (2019).
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motion cannot appropriately account for the effects of low-probability, high-impact events

such as forced unemployment and job displacement.5 To increase the realism of the model,

we consider the LNIS in the optimal consumption and investment framework.

Incomplete Market. It has long been known that market completeness under no arbi-

trage implies the existence of a unique state price density and the resulting unique risk-

neutral measure, under which the expected return on any asset becomes the risk-free rate

(Ross, 1978). However, when markets are incomplete, i.e., when risk may be undiver-

sifiable, the assumption of risk-neutrality with the unique state price density cannot be

justified. Rather, the number of state price densities is infinite, so the set of equivalent

martingale measures is also infinite. To price the expected return on an asset under the

LNIS, this multitude of state price densities must be pruned to one.

Although a theoretical framework for the martingale pricing in incomplete markets

exists (Karatzas et al., 1991), it cannot easily be used to characterize the set of state price

densities explicitly.6 The state price density has been derived explicitly by Kou (2002) and

5Low et al. (2010) show that large earnings losses are observed at job displacement.
6In order to address the challenges of market incompleteness, instead of the martingale pricing approach,

alternative dynamic programming approach can be used for the pricing in incomplete markets (Duffie et al.,

1997; Liu et al., 2005). However, in this case, it involves highly non-linear Hamilton-Jacobi-Bellman (HJB)

equations, which are almost impossible to solve analytically. Therefore, use of dynamic programming

approach requires use of complex numerical schemes to solve incomplete market problems. With no

consideration of labor income and its risk, one can adopt the approaches of Garlappi and Skoulakis (2010),

Jin and Zhang (2012), and Jin et al. (2017) for such a numerical approach to solving the consumption
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Liu et al. (2003). However, these models have overlooked the labor income risk, which is

a major dimension of market incompleteness. Based on the idea of market completion by

Karatzas et al. (1991), Liu et al. (2003) have established a dynamically completed market

with derivatives. Similar to Liu et al. (2003), Branger et al. (2017) add derivatives to

complete the market in which variances and covariances of return are stochastic. It would

be tricky to apply their models to the incomplete market setting, without resorting to the

idealistically completed market.

In our work, the LNIS is driven by an exogenous shock that is assumed to occur with

a Poisson probability distribution, and hence may not be fully diversified away. In such

a setting with the random arrival of the income shock, the classical martingale pricing

approach (Cox and Huang, 1989) that uses the risk-neutral measure is no longer available.

We believe the main difficulty lies in that allowing for market incompleteness usually gives

rise to considerable challenges in deriving the closed-form (or analytically tractable) unique

state price density for pricing purposes. Ours is a first attempt to develop an analytically

tractable martingale pricing approach in an incomplete market with the LNIS. We start

from the idea of fictitious completion (Karatzas et al., 1991) to establish a risk-neutral

intensity of the LNIS; the uniquely determined risk-neutral intensity should be used when

managing an individual’s dynamic budget constraint.7

and investment problem in incomplete markets.
7More recently, Ahn et al. (2019) provide a numerical scheme to characterize the unique state price

density.
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General Equilibrium Analysis. There is an extensive literature on a general equilib-

rium analysis. Existing equilibrium approaches of Basak (1995), Heaton and Lucas (1996),

Basak and Cuoco (1998), Basak and Shapiro (2001), Liu et al. (2003), Maenhout (2004),

Gârleanu and Panageas (2015), Kimball et al. (2018), Gomes (2019) assume market com-

pleteness and therefore cannot investigate the consequence of the LNIS. Wang (2003),

Gomes and Michaelides (2008), Guvenen (2009), Krueger and Lustig (2010), Christensen

et al. (2012), Dumas and Lyasoff (2012) have incorporated unhedgeable income shocks

in their equilibrium analysis, but do not consider disastrous income shocks such as the

LNIS. These models consider only diffusive-type income shocks and cannot account for

jump-type income risk. Ours is the first study to consider both diffusive income shocks

and LNIS in the equilibrium analysis, and thereby to explain today’s low-interest-rate

environment through the precautionary savings channel.8

Related Literature. Three papers share similarities with problems of a permanent

discrete-jump income shock.9 One (Wang et al., 2016) studies an incomplete-market

consumption-savings model with recursive utility and stochastic income modeled by both a

8According to the Ramsey rule (Ramsey, 1928), interest rate equals subjective discount rate plus the

product of consumption elasticity of marginal utility and consumption growth rate. We generalize the

Ramsey rule in a rational expectations equilibrium framework.
9Gormley et al. (2010) have considered a large, negative wealth shock in the optimal consumption

and investment framework. They have demonstrated that the absence of sufficient social security and

insurance against the wealth shock can explain the limited stock market participation puzzle and the low

consumption and high savings rate puzzle.
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Brownian motion and large jump income shocks. However, this paper neglects optimal in-

vestment in risky assets and does not investigate the effects of stochastic income on general

equilibrium quantities. Another (Bensoussan et al., 2016) studies an optimal retirement

model that considers jump-type forced unemployment risk. However, this work uses a

piecewise connected utility function to solve the case in which unbounded downside utili-

ties are caused by forced unemployment risk.10 Also, the paper does not analyze general

equilibrium implications.11 The other (Schmidt, 2016) studies asset pricing implications

of idiosyncratic tail risk with recursive preferences, heterogeneous agents, and incomplete

markets. However, Schmidt’s work with different techniques distracts from our main point

which is precautionary savings implications with the LNIS on interest rates. Further, dif-

ferent from Schmidt (2016), we are able to provide analytically tractable solutions for the

optimal strategies and general equilibrium quantities.

Outline. This paper is organized as follows. In Section 2, we establish the optimal con-

sumption and investment problem with the LNIS. In Section 3, we generalize the PIH and

obtain analytically tractable optimal consumption and investment strategies, and thereby

quantify the precautionary savings that are required to smooth consumption and demand

10With such piecewise connected utility function, they assume that people is risk averse for positive

wealth, but indifferent for negative wealth up to their borrowing against labor income, which is not always

justified in general cases.
11Technically, Wang et al. (2016) and Bensoussan et al. (2016) use the dynamic programming ap-

proach rather than the martingale pricing approach with the state price density, so their analyses is not

straightforward to be extended to a general equilibrium analysis.
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for hedging against the LNIS. In Section 4, we provide a general equilibrium analysis with

a focus on interest rate. In Section 5, we perform an in-depth quantitative analysis to

discuss various properties of the optimal strategies and general equilibrium quantities. In

Section 6, we conclude the paper.

2 The Model

Model Primitives. We consider an infinite-horizon economy with a single consump-

tion good (the numeraire). Each representative agent is assumed to derive utility from

intermediate consumption in the form of∫ ∞
0

e−βtU
(
c(t)
)
dt,

where β > 0 is the subjective discount rate, c(·) denotes reduced-form consumption of goods

and services, and U(·) measures the agent’s utility and is twice continuously differentiable,

strictly increasing, and strictly concave.

Throughout the paper, we consider the following constant relative risk aversion (CRRA)

utility function:

U
(
c(t)
)

=
c(t)1−γ

1− γ
,

where c(t) is per-period consumption at time t, and γ > 1 is the constant coefficient for an

agent’s relative risk aversion.12

Uncertainty is driven by a filtered probability space (Ω,F , {Ft}, P ), in which a multi-

dimensional Brownian motion and a Poisson process are defined. All stochastic processes

12We assume that γ > 1, which is consistent with the data.
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are adapted to {Ft}, which is the P -augmentation of the filtration generated by the Brow-

nian motion and the Poisson process. All stated stochastic processes are assumed to be

well defined, without explicitly stating the regularity conditions.

Model Setup. Financial assets in the market are summarized by one riskless bond and

multiple risky stocks. The bond price B and the stock prices S are given by

dB(t) = rB(t)dt

and

dS(t) +D(t) = S(t){µdt+ σ>dZ(t)},

where r is the risk-free interest rate, D(t) = (d1, ..., dN) are dividends for N risky stocks, µ

is the constant mean vector, σ is the constant nonsingular standard deviation matrix, and

Z(t) is the standard Brownian motion process with dimensionality equal to the number

of linearly independent returns on stocks. In the context of finance interpretation, Z(t)

represents variations in market/economic condition that stem from a source of market risk

(or a market factor) in the economy.

We consider aggregate output process I(t) modeled by a geometric Brownian motion

as:

dI(t) = µII(t)dt+ (σI)>I(t)dZ(t), I(0) = I > 0,

where µI is the output mean vector and σI is the standard deviation vector, and Z(t)

is the market factor. The output is exposed to a large, negative income shock (LNIS),

which is assumed to be distributed according to an exponential distribution (i.e., a Poisson
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shock) with intensity δ. Specifically, the output is assumed to plummet immediately to

kI(t) (k ∈ (0, 1)) from I(t) in the aftermath of such a random and jump income shock.

We assume that the fraction ξ ∈ (0, 1) of aggregate output constitutes aggregate earnings

ξI(t). The remaining fraction 1− ξ of aggregate output is paid out as a dividend as:

D(t) = (1− ξ)I(t).

The risk in the model results from two sources: the market factor and the undiversifiable

LNIS. The market factor is captured by fluctuations dZ(t) in market/economic conditions.

The undiversifiable income shock is captured by a Poisson shock with a small probability

that comes as the LNIS.

The Optimal Consumption and Investment Problem. This problem with the LNIS

is given by:

V (w, I) ≡ sup
(c,π)

E
[ ∫ τ

0

e−βt
c(t)1−γ

1− γ
dt+ e−βτV A(W (τ), I(τ))

]
, 13 (1)

which is subject to the dynamic wealth constraint:

dW (t) = {rW (t)− c(t) + ξI(t) + π(t)>(µ− r1)}dt+ π(t)>σ>dZ(t), W (0) = w > −ξI/β1,

(2)

β1 = r − µI + (σI)>θ,

W (t) > −ξI(t)

β1
, for all 0 ≤ t < τ,

13Throughout the paper, we only consider the set of admissible policies of consumption c(t) and invest-

ment π(t).
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where τ is the random arrival of the LNIS, V A(W (τ), I(τ)) is the case of Merton (1969,

1971) with a stochastic income stream kξI(t) (t ≥ τ) without the LNIS, 1 is a vector of

one’s with dimensionality equal to the number of stocks, and π(t) is the dollar amount

vector invested in each risky stock.

3 Generalized Permanent Income Hypothesis

V A(W (τ), I(τ)) in (1) is known to have the following closed-form solution:

V A(W (τ), I(τ)) ≡ sup
(c,π)

E
[ ∫ ∞

τ

e−βt
c(t)1−γ

1− γ
dt
]

= K
{W (τ) + kξI(τ)/β1}1−γ

1− γ
,

where

K = A−γ, A =
γ − 1

γ

(
r +
||θ||2

2γ

)
+
β

γ
, θ = (σ>)−1(µ− r1).

Here, θ is the Sharpe ratio vector.

The optimal consumption and investment problem of (1) can be then rewritten as the

following: after integrating out the Poisson intensity δ,14

V (w, I) ≡ sup
(c,π)

E
[ ∫ ∞

0

e−(β+δ)t
(c(t)1−γ

1− γ
+ δK

{W (t) + kξI(t)/β1}1−γ

1− γ

)
dt
]
, (3)

subject to (2).

Given the restated optimal consumption and investment problem of (3), we can gen-

eralize Friedman’s permanent income hypothesis (PIH) with the LNIS. We find that the

14The technical details of the problem derivation are available in an online appendix.
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permanent discrete jump income shock makes the maximized expected discounted util-

ity −∞ (or the maximized expected utility +∞). When people would choose to finance

their future consumption needs by borrowing against their human capital, as suggested

by the conventional permanent income hypothesis, the new intertemporal wealth maxi-

mization term caused by the income shock with δ on the right hand side of (3) could

become −∞, as wealth approaches the borrowing limit of −ξI(t)/β1. In this case, given

−ξI(t)/β1 < −kξI(t)/β1, the value function V (w, I) also becomes −∞. This technical

challenge is acknowledged in Bensoussan et al. (2016) when a jump-type income shock

occurs. We will address this challenge by newly imposing a lower bound of wealth.

The Optimal Consumption and Investment Strategies. The generalized PIH with

the optimal consumption and investment framework should address the challenge of −∞

driven by individual earnings catastrophe risk. To meet this requirement, we impose a

catastrophically low time-varying value of wealth, reminiscent of a starvation level below

which people cannot sustain themselves financially and consequently, do not invest in the

stock market. The new lower bound of wealth can be given by:

W (t) > −L(t) > −kξI(t)

β1
, for all t ≥ 0, (4)

where L(t) is a given nonnegative time-varying function that makes endogenous investment

in the stock market equal to zero.

Equation (4) enables derivation (in an online appendix) of analytically tractable optimal

consumption and investment strategies with the LNIS.
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Theorem 3.1 The optimal strategies for consumption c(t) and risky stock investment π(t)

are obtained in closed-form:

c(t) = (Â+ δ)
[
w +

ξI

β1
− ξIB∗(z; δ)z−α

∗
δ − PS

]
, (5)

π(t) =
1

γ
σ−1θw

+
1

γ
σ−1(θ − γσI)

[ξI
β1

+ (γα∗δ − 1)ξIB∗(z; δ)z−α
∗
δ

− 2γ

||β3||2
δK

(
w +

kξI

β1

)1−γ
1− γ

/
c(t)−γ + (γαδ − 1)× PS1 + (γα∗δ − 1)× PS2

]
,

(6)

where

Â =
γ − 1

γ

(
β1 +

||β3||2

2γ

)
+
β2
γ
,

B∗(z; δ) and z are the two constants to be determined by the boundary conditions

G(z) = − L
ξI

+
1

β1
and G′(z) = 0,

αδ > 1 and −1 < α∗δ < 0 are the two roots to the following characteristic equation:

F (α; δ) ≡ −1

2
||β3||2α(α− 1) + α(β2 + δ − β1)α + β1 = 0,

G(z) satisfies the following non-linear differential equation:

−1

2
||β3||2z2G′′(z)− (||β3||2 + β2 + δ − β1)zG′(z)

+ β1G(z) + δK
(
G(z)− 1

β1
+

k

β1

)−γ
G′(z) = z−1/γ, 0 < z < z,

with

β2 = β − µI(1− γ) +
1

2
γ(1− γ)||σI ||2,

β3 = γ(σI)> − θ>,
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and PS represents the precautionary savings driven by the LNIS and it is given by

PS = PS1 + PS2,

PS1 =
2δK(αδ − 1)ξI

||β3||2(αδ − α∗δ)(1− γ)
z−αδ

∫ z

0

µαδ−2
(
G(µ)− 1

β1
+

k

β1

)1−γ
dµ < 0,

PS2 =
2δK(α∗δ − 1)ξI

||β3||2(αδ − α∗δ)(1− γ)
z−α

∗
δ

∫ z

z

µα
∗
δ−2
(
G(µ)− 1

β1
+

k

β1

)1−γ
dµ > 0.

Theorem 3.1 helps people to achieve consumption smoothing when the LNIS is possible.

The classic PIH can be revisited as an annuitized version of consumption profiles over the

life cycle:

c(t) = A
(
w +

ξI

β1

)
, (7)

where

A =
γ − 1

γ

(
r +
||θ||2

2γ

)
+
β

γ
,

results from (5) when σI = 0 and δ = 0, i.e., with no income risk. According to this PIH,

the changes in marginal consumption with financial wealth are constant, thereby leading

to consumption smoothing regardless of wealth levels. In the case of income risk (σI = 0),

but without the LNIS (δ = 0), the individual who is borrowing constrained by (4) can

achieve consumption smoothing by adopting the following consumption strategy:

c(t) = A
(
w +

ξI

β1
− ξIB∗(z; 0)z−α

∗
0

)
. (8)

As precaution against income risk, the individual has savings that are given by the differ-

ence between (7) and (8):15

AξIB∗(z; 0)z−α
∗
0 . (9)

15People who are faced with extra risk are likely to finance current/future consumption by relying on their
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Alternatively, precautionary savings can be calculated from total income risk that re-

sults from output standard deviation σI > 0 and the LNIS δ > 0 as the difference between

(7) and (5). Further, comparison of precautionary savings with and without the LNIS

yields PS in Theorem 3.1; this quantity represents the precautionary savings driven by

the LNIS. Our quantitative analysis in the next section uses these precautionary savings to

determine how much should individuals be prepared now for their consumption smoothing.

The classic Merton (1969, 1971) investment rule can be revisited:

π(t) =
1

γ
σ−1θ

(
w +

ξI

β1

)
− σ−1σI ξI

β1
, (10)

comes from (6) when σI > 0 and θ = 0, i.e., with output uncertainty but with the

LNIS. The first term on the right hand side of (10) represents the mean-variance asset

allocation and the second one represents the demand for hedging (or the intertemporal

hedging component) against the output uncertainty. The individual whose borrowing is

constrained by (4) derives the following optimal investment strategy:

π(t) =
1

γ
σ−1θ

(
w +

ξI

β1

)
− σ−1σI ξI

β1
+

1

γ
σ−1(θ − γσI)(γα∗0 − 1)ξIB∗(z; 0)z−α

∗
0 . (11)

The difference between (10) and (11) can then capture the effects of borrowing constraints

in (4):

−1

γ
σ−1(θ − γσI)(γα∗0 − 1)ξIB∗(z; 0)z−α

∗
0 . (12)

savings or to cut down on consumption amount to reserve enough financial resources due to precautionary

reasons (Campbell, 1987).
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This quantity provides new understanding of individual investment with benchmarking.

Specifically, when the benchmark is taken to be aggregate output, σIθ−1 can quantify the

sensitivity of the benchmark (or the aggregate output) to economic conditions, and 1/γ

can quantify the sensitivity of the Merton policy (or the stock investment) to economic

conditions.16 If the aggregate output becomes less sensitive to economic conditions than

the stock investment, i.e., if σIθ−1 < 1/γ, then the optimal behavior of the borrowing-

constrained individual is to reduce the investment amount, and to rely on earnings gen-

erated by the aggregate output that constitute the implicit cash holdings in readiness for

binding borrowing constraints. In an economy in which the aggregate output reacts more

to changes in economic conditions than the stock investment, the individual earnings no

longer act as a substitute for the implicit cash holdings, rather these earnings behave like

a stochastic stream. Hence, the optimal choice is then to increase the investment amount,

taking advantage of the risk premium and consequently, possibly avoiding binding borrow-

ing constraints.

We generalize the Merton-type investment strategy with the LNIS (δ > 0), thereby

deriving the generalized optimal investment strategy in (6). Also, we can measure the

demand of the borrowing-constrained individual for hedging against the LNIS as the dif-

ference between (10) and (6). The pure effects of the LNIS on investment, abstracting

from borrowing constraints, are derived from the comparison of this difference with (12).

16Basak et al. (2006) have adopted these quantities in their analysis for the risk management with

benchmarking.
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Thus, the additional term in (6) given by

− 2γ

||β3||2
δK

(
w +

kξI

β1

)1−γ
1− γ

/
c(t)−γ

captures the demand for risk diversification by saving in risky assets. Specifically, it is

the ratio of intertemporal wealth maximization term in (3), δK(w + kξI/β1)
1−γ/(1 − γ),

to the marginal utility of one extra unit of consumption, c−γ = (c1−γ/(1 − γ))′. In the

face of unexpected, large, and negative reductions in their earnings, people can sell their

investment assets to provide funds for their consumption needs. The precautionary savings

(PS) driven by the LNIS are also important in the investment. To attain consumption

smoothing when the LNIS can occur, the optimal choice is to reduce the investment by

some proportions (γαδ − 1) of PS1 and (γα∗δ − 1) of PS2. Overall, we find two opposing

effects: first the LNIS encourages a risk-diversification motive that increases increases

risky investment (Benzoni et al., 2007; Ahn et al., 2019); in contrast, the LNIS increases

background risk and consequently increases the precautionary savings motive that reduces

risky investment.

4 General Equilibrium Analysis

Equilibrium Building Blocks. We consider a simple pure exchange economy in the

type of Lucas (1978). The economy is populated by a representative agent who encounters

the LNIS. The agent is entitled to an endowment to be consumed in equilibrium and she is

assumed to trade a riskless bond and multiple risky stocks distributing the dividend. The
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returns to these assets adjust to represent a no-trade equilibrium.

Definition 4.1 An equilibrium can be characterized as a collection of (r, µ, σ) and optimal

strategies (c(t), π(t)) such that the consumption good, stock, and bond markets clear as

c(t) = D(t),

πj(t) = Sj(t)W (t), j = 1, ..., N,

W (t) =
N∑
j=1

Sj(t),

where D(t) =
∑N

j=1 dj is the aggregate dividend process and N is the number of risky stocks.

State Price Density. The following theorem characterizes the unique state price density

in the presence of income risk including the LNIS.

Theorem 4.1 The unique state price density is derived in closed-form:

ξ δ̂(t) = exp
{

ln
( δ̂
δ

)
1{τ≤t} − (δ̂ − δ)t

}
H(t), (13)

where

δ̂ =
(
G(z)− 1

β1
+

k

β1

)−γ δK
z
,

τ is the arrival time of a Poisson shock, 1 is an indicator function that gives 1 if the

Poisson shock occurs at time t and 0 otherwise, G(z) satisfies the following non-linear

differential equation:

−1

2
||β3||2z2G′′(z)− (||β3||2 + β2 + δ − β1)zG′(z)

+ β1G(z) + δK
(
G(z)− 1

β1
+

k

β1

)−γ
G′(z) = z−1/γ, 0 < z < z,
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with

β2 = β − µI(1− γ) +
1

2
γ(1− γ)||σI ||2,

β3 = γ(σI)> − θ>,

the boundary conditions

G(z) = − L
ξI

+
1

β1
and G′(z) = 0,

and the dynamics of H(t) are given by

dH(t) = −H(t){rdt+ θ>dZ(t)}, H(0) = 1.

Proof. See an online appendix. Q.E.D.

The unique state price density given in (13) is a generalized version of the well-known

Arrow-Debreu price. The identified quantity ξ δ̂(t, ζ) can be regarded as the Arrow-Debreu

price per unit probability P of one unit consumption good in state ζ ∈ Ω at time t.17

Theorem 4.1 allows a convenient multiplicative separation of the traditional Arrow-

Debreu price and the LNIS adjustments. In the absence of the LNIS (δ = δ̂), the state

price density (13) reduces to the conventional Arrow-Debrew price, and presents only the

output uncertainty adjustments. In the presence of the LNIS (δ 6= δ̂), the extra income

shock adjustments affect the generalized Arrow-Debreu price ξ δ̂(t) in (13).

17Basically, the Arrow-Debrew price is the future price of one unit consumption good. It can serve

as a shadow price for discounting future costs and benefits in financial analysis. The derived unique

state price density determines the risk-neutrality with respect to the LNIS. This price can be used as the

Randon-Nikodym derivative for measure change purposes.
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Equilibrium Consumption Price. The rational expectations equilibrium consumption

price (equilibrium state price density) must satisfy the Euler equation (Stokey and Lucas,

1989).18 When solving the optimal consumption and investment problem of (3) with dy-

namic wealth constraint (2) and lower bound of wealth (4), we can derive the following

Euler equation:

U ′(c(t)) = λe(β−(δ̂−δ))tH(t).

Using Itô’s formula, we explicitly derive the following equilibrium consumption dynamics:19

for t < τ ,

dc(t)

c(t)
= − U ′(c(t))

U ′′(c(t))c(t)

[{(
r + (δ̂ − δ)

)
− β

}
dt− θ>dZ(t)

]
.

Therefore, the Euler equation shows that equilibrium consumption growth is measured as

a gap between income-risk-adjusted interest rate of (δ̂ − δ) and subjective discount rate

of β, weighted by the elasticity of intertemporal substitution. The risk-neutral Poisson

intensity δ̂ is included in addition to the original Poisson intensity δ. δ̂ either increases or

decreases the equilibrium consumption growth relative to risk-free interest rate r by the

amount of δ̂− δ. When δ̂ = δ, the LNIS can be fully diversified; as a result, it is rewarded

with the zero risk premium. However, when δ̂ 6= δ, the LNIS cannot be diversified, so it

should be compensated for by the nonzero risk premium δ̂ − δ.20 In the context of the

18An Euler equation is a differential equation that represents an intertemporal first-order condition for

optimal consumption (Durlauf and Blume (2008), pp. 1854-1855).

19This dynamics are equivalent to the dynamics of equilibrium consumption price e−βtξδ̂(t) for t < τ .
20The canonical CAPM does not generate the nonzero income risk premium as we obtained, whereas

in this paper, the LNIS can be thought of as extra undiversifiable risk source, accordingly, it should be
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traditional risk-return trade-off (i.e., high risk and high return), δ̂ should be larger than δ,21

as a result, the income risk premium should be positive. Thus, the effective risk-adjusted

interest rate represents such a risk compensation for additional exposure to the LNIS, and

thereby increases both equilibrium consumption growth and equilibrium consumption price

compared to the case without the LNIS.22

Equilibrium Risk-Free Interest Rate. The following theorem solves the equilibrium

risk-free interest rate.

Theorem 4.2 The equilibrium risk-free interest rate is derived in closed-form:

r = β + γµI − 1

2
γ(1 + γ)(σI)2 − (δ̂(r)− δ), (14)

where µI and σI represent the expected consumption growth rate and volatility of consump-

tion growth rate, and the constant δ̂(r) is determined by solving the following non-linear

algebraic equation:

δ̂(r) =
{( w

ξI
+

1

β1(δ̂(r))

)/( w
ξI

+
k

β1(δ̂(r))

)}γ
{β1(δ̂(r))}γδK(r)

with

β1(δ̂(r)) = β + (γ − 1)µI − 1

2
γ(γ − 1)(σI)2 − (δ̂(r)− δ),

priced.
21This result can be also confirmed with a wide range of parameter values.
22Intuitively, the cost of one unit of equilibrium consumption increases with increase in a person’s

uncertainty about their current of future earnings. Further, the presence of the LNIS may increase the

positive skew of the distribution of equilibrium consumption price (or equilibrium state price density), and

this change will affect existing frameworks for asset pricing and risk management.
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K(r) =
{γ − 1

γ

(
r +

γ(σI)2

2

)
+
β

γ

}−γ
.

Proof. See an online appendix. Q.E.D.

Our equilibrium results with the LNIS on the risk-free interest rate sit somewhat easily

with the key role of the savings inequality in shaping the wealth concentration among the

rich (Piketty, 2014; Acemoglu and Robison, 2015). In the existing equilibrium literature

without the LNIS, the equilibrium difference of β− r is large, so higher-wealth individuals

have a tendency to consume more and save less. This is because their financial wealth

grows at the rate of β, whereas their savings grow at the rate of r. When financial wealth

is disproportionately concentrated on the top of the wealth distribution, i.e., with the

unequally distributed wealth, the rich dis-save in equilibrium. Thus, the low or nearly zero

wedge of β − r is the key to generate high savings rates for the wealthy.

How do we obtain such a low difference of β − r in equilibrium? The possibility is

to understand in equilibrium the effects of the LNIS on the interest rate. The represen-

tative agent facing the LNIS demands extra premium for her risk exposure to the LNIS,

which corresponds to a decrease in β by the amount of the risk premium δ̂ − δ depending

upon Poisson arrival intensity δ of the LNIS. With the LNIS, the agent’s demand for pre-

cautionary savings is sufficiently strong making her save at a high rate and lowering the

equilibrium interest rate significantly, which will be further detailed in Section 5.

This effect of δ on interest rates is particularly relevant to today’s low interest-rate

situation, in that the LNIS has placed a heavy burden on the choice of equilibrium interest

rate. This additional burden also leads to a reduction of interest rate. A wide range of
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private and public insurance would greatly improve security of earnings in the long run.

Thus, strategies and solutions focusing on the elimination of risk potentially catastrophic

individual earnings losses as much as possible would help to reduce the amount of com-

pensation for exposure to the LNIS, and might return the interest rate to its normal status

during times of stable economy.

5 Quantitative Analysis

In this section, we perform quantitative analysis to illustrate the optimal strategies to

attain consumption smoothing when the LNIS can occur.

Lower Bound of Wealth. In terms of empirical reality, we can relate the lower bound

to a tightening of credit.

In 2016, 20.8 percent of families were considered credit constrained – those

who reported being denied credit in the past year, as well as those who did not

apply for credit for fear of being denied in the past year (Survey of Consumer

Finances, 2017).

Borrowing against human capital is constrained fully or partly. Thus, the extent to

which credit is tightened, i.e., the level of lower bound of wealth becomes a real consider-

ation.

Aggregate earnings are assumed to be given by a constant income stream. Specifically,

the earnings are given by ε ≡ ξI over the life cycle. Then, the lower bound −L(t) with
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L(0) = L of wealth in (4) can be empirically plausible using the following relationship:23

L = ω
r + ν + δk

(r + ν + δ)(r + ν)
ε, for 0 ≤ ω < 1, (15)

where ω represents the extent to which credit is tightened and ν > 0 is the agent’s constant

mortality intensity when the time to death is distributed with an exponential distribution.24

The utility related to death is normalized as zero.25

The relationship (15) shows that the value of human capital depreciates relative to that

predicted by Friedman (1957). Without the LNIS (i.e., δ = 0), the lower bound reduces

to ε/(r + ν) as ω approaches one (i.e., when credit tightening does not occur). With the

LNIS (i.e., δ > 0), the lower bound is always larger than −ε/(r + ν), which is more credit

tightened than without the LNIS.

5.1 Parameter Values

Financial Market. We consider only two assets in the financial market: a riskless bond

and a risky stock. We choose equity premium, µ − r, as 4% and risk-free rate, r, as 2%.

23The relationship shows an accurate reflection of human capital adjusted by the LNIS. The derivation

details are available in an online appendix.
24The constant mortality rate assumption is made for parsimony of the model, helping explore horizon-

dependent polices in the simplest possible economic environment. The derived model predictions are

consistent with the typical life-cycle advice. A more realistic model would allow for a Gompertz force of

mortality, which is quite relevant to the actuarial literature.
25On account of this normalization, we do not consider motive for bequest. The presence of bequest

motive is expected to reinforce the negative impacts of the LNIS.
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The stock volatility, σ, is assumed to be 20%.26

People Preferences. The coefficient of relative risk aversion, γ, is set to 2. We adopt

the common value of 4% for the subjective discount rate, β. The mortality rate, ν, is fixed

to 2%, i.e., the expected time to death is 50 years.

Aggregate Earnings. When a jump-type LNIS occurs, aggregate earnings decrease from

ε to kε, k ∈ (0, 1). For prototype example, we let the LNIS be associated with the risk

of forced unemployment; this risk can be also a leading cause of the credit tightening

formulated by (15).27

The Poission intensity δ can be thought of as an empirically plausible small annual

probability of forced unemployment. The intensity δ is matched up with the mean 7%

of the actual unemployment rates described in U.S. states monthly rankings seasonally

adjusted Aug. 2013 (Source: Bureau of Labor Statistics). The forced unemployment then

occurs 14-year from now on average. The recovery parameter k is set to 20%. In practice,

U.S. households have been rescued by a safety net against forced unemployment, and

26Compared to the century-long sample (1891-1994) by Campbell (1999), the risk-free rate of 2% is

reasonable, but the equity premium of 4% is somewhat conservative. In our general equilibrium analysis,

the risk-free rate and equity premium can be determined to 2% and 4%, respectively, with the reasonable

values of risk aversion.
27A key insight comes from economic recessions followed by human capital depreciation during long-term

periods of unemployment. During the 2007-2009 Great Recession in the United States, many people have

experienced the unprecedented largest reductions in their consumption and unemployment.
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recover 20% of the income that they earned before unemployment (Carroll et al., 2003).

5.2 Numerical Illustrations

In this section, we obtain numerical solutions and present graphical illustrations to pro-

vide some details to the discussion about the optimal strategies and general equilibrium

quantities with the LNIS.

In subsequent analysis, we will fix one dimension by setting ω = 0, which considers

the most extreme credit-tightened scenario. We then investigate the effects of the other

dimension by varying δ. For the details about the effects of credit tightening, refer to an

online appendix.

Precautionary Savings. The optimal consumption amount would fall more in the pres-

ence of the LNIS than in its absence (Figure 1).

In the absence of the LNIS (δ = 0), similar to Bewley (1977) and Campbell (1987),

we could confirm the amount of precautionary savings decreases in financial wealth w (not

reported here). These results imply that people can self-insure by saving financial resources

from a constant income stream when financial markets are stable and by expending such

resources on the management of adverse economic shocks in the markets.

However, in the presence of the LNIS (δ > 0), the amount of precautionary savings

(quantified in Section 3) does not decrease as wealth increases (Figure 2). Rather, this

amount is an increasing and concave function of wealth. People would be better off keeping
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Figure 1: Optimal consumption amount. Parameter values: r = 0.02 (risk-free rate), β = 0.04

(subjective discount rate), µ = 0.06 (expected stock return), σ = 0.20 (stock volatility), γ = 2 (risk

aversion), ε = 1 (income), ν = 0.02 (mortality rate), and k = 0.2 (recovery rate). Note: The optimal

consumption amount would fall more in the presence of the LNIS than in its absence.

accumulating extra wealth for precautionary reasons, and use this extra wealth as a buffer

against the LNIS. However, an unexpected, exogenous, and permanent jump-type LNIS is

much harder to buffer than adverse diffusive-type income shocks, so readiness for the LNIS

requires a large amount of savings.

The percentage precautionary savings is defined as the difference of precautionary sav-

ings with and without the LNIS, divided by the optimal consumption amount of Merton

(1969, 1971); i.e., the target amount of consumption. Interestingly, this percentage shows

a hump-shaped relationship to wealth. Contrary to the predictions of Bewley (1977) and

Campbell (1987), the LNIS should affect significantly the savings rate of rich people. Em-
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Figure 2: Precautionary savings amount and ratio. Parameter values: r = 0.02 (risk-free rate),

β = 0.04 (subjective discount rate), µ = 0.06 (expected stock return), σ = 0.20 (stock volatility), γ = 2

(risk aversion), ε = 1 (income), ν = 0.02 (mortality rate), and k = 0.2 (recovery rate). Note: Contrary to

the case in the absence of the LNIS (δ = 0), in its presence (δ > 0) the amount of precautionary savings

does not decrease as wealth increases. Rather, this amount is an increasing and concave function of wealth.
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pirically, the average ratio of wealth-to-income between 1952 and 2016 in the U.S. was 6.6.

Since labor income is normalized as one in our paper, high-wealth people can be regarded

as those having wealth more than 6.6. We find that the possibility of the LNIS increases

the precautionary savings as wealth increases, thereby explaining high savings rates of

the wealthy rather than negative savings rates predicted by Bewley (1977) and Camp-

bell (1987). Overall, high-wealth people have higher proportional savings than low-wealth

people.

The recent studies offer many alternative explanations for the upward-sloping part of

individual savings profile: a positive relation between savings rates and income (Dynan et

al., 2004), entrepreneurship purposes for entering and expanding business (Buera, 2009),

out-of-pocket medical expenses patterns (De Nardi et al., 2010), the mix of bequests and

human capital, entrepreneurship, and medical-expense risk (De Nardi and Fella, 2017).

The explanation we provide here, while different, would be regarded as complementary to

these.

The income-to-wealth-ratio is inversely related to individual wealth. The income is a

major staple of the relatively low-wealth people and they should concern themselves with

diversifying the negative effects of the LNIS, thereby continuing being able to afford what

they can currently afford by saving less. Relative to the low-wealth people, the income

is a smaller staple of the high-wealth people, so they have greater tolerance for risk than

the low-wealth people. Hence, the high-wealth people would rather not be concerned with

diversification. They can afford to pay further for economic preparedness and emergency

savings, thereby saving more to meet the required precautionary savings for consumption
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smoothing. They would, thus, be well-prepared for unexpected hardship caused by the

LNIS.

The downward-sloping part of individual savings profile can be understood within the

traditional life-cycle framework. In the context of the life-cycle hypothesis, the savings

should have the downward-sloping part at the high end of wealth (Jappelli, 1999; Deaton

and Paxson, 2000; Attanasio and Szekely, 2000; Cocco et al., 2005; Benzoni et al., 2007).28

For very-high-wealth people, the LNIS does not have sufficient power to affect as their

enough wealth absorbs the negative effects of the LNIS. In this case, income with the LNIS

takes on riskless savings-like feature. As a result, the very-high-wealth people start to

reduce their savings. This creates the downward-sloping part of the savings profile.

Human Capital Value. Neglecting the LNIS can be costly to individuals who aim to

attain their consumption smoothing in terms of human capital aspect. We measure the

value of human capital as the marginal rate of substitution between income and financial

wealth. That is, the human capital value can be regarded as the individual’s subjective

marginal value of her income.

Similar to the relation of (15), the actuarial fair value (AFV) of future income dis-

28Empirically, the downward-sloping part has been observed by Jappelli (1999) using data from Italy,

by Deaton and Paxson (2000) using data from Taiwan and Thailand, and by Attanasio and Szekely

(2000) using data from East Asia and Latin America. These empirical observations have been justified by

theoretical life-cycle models such as Cocco et al. (2005) and Benzoni et al. (2007).
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counted at the risk-free interest rate is29

AFV =
r + ν + δk

(r + ν + δ)(r + ν)
ε,

which is the present value of income. We use AFV as a benchmark against the effects of

the LNIS on the human capital value.

Definition 5.1 Let V (w, I; δ) be the value function given in (3) with the Poisson intensity

δ. Then, the value of human capital is defined as the marginal rate of substitution between

income and financial wealth, i.e.,

∂V (w, I; δ)

∂I

/∂V (w, I; δ)

∂w
.

The LNIS dramatically reduces the value of human capital, regardless of levels of fi-

nancial wealth (Figure 3). As expected, the level of human capital decreases as the chance

of income shock (δ) increases. The wage would thus decrease with the LNIS.

Interestingly, we could see an increasing and concave trend of the human capital value

with respect to wealth, and the concavity strengthens as wealth decreases. This trend

would be especially problematic for the poor people because they have very little residual

income to save with the LNIS and therefore may be ill-prepared for the situations in its

aftermath.

The increasing and concave human capital value in wealth would have relevance to the

wealth concentration among the wealthy. While the rich theoretically do not save (Bewley,

29In the actuarial literature, it is common to use the risk-free interest rate for actuarial calculation

purposes.
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Figure 3: Human capital value. Parameter values: r = 0.02 (risk-free rate), β = 0.04 (subjective

discount rate), µ = 0.06 (expected stock return), σ = 0.20 (stock volatility), γ = 2 (risk aversion), ε = 1

(income), ν = 0.02 (mortality rate), and k = 0.2 (recovery rate). Note: The LNIS dramatically reduces the

value of human capital, regardless of levels of financial wealth. The human capital value has an increasing

and concave trend and the concavity strengthens as wealth decreases.
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(a) δ = 0

(b) δ = 0.07

Figure 4: The sensitivity of human capital value with respect to changes of risk aversion.

Parameter values: r = 0.02 (risk-free rate), β = 0.04 (subjective discount rate), µ = 0.06 (expected stock

return), σ = 0.20 (stock volatility), γ = 2 (risk aversion), ε = 1 (income), ν = 0.02 (mortality rate),

and k = 0.2 (recovery rate). Note: An increase of risk aversion increases the human capital value in the

absence of the LNIS. In contrast, in the presence of the LNIS, an increase of risk aversion decreases the

human capital value.
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1977; Campbell, 1987), they empirically have strong incentives to save and show the wealth

concentration (Kaplan and Rauh, 2013).30 In terms of the human capital aspect, the top

wealth-rich are high-income households and thus, their relatively high exposure of labor

income to the LNIS is a likely contributor to their high precautionary savings rates for

the preparation after the LNIS, which is consistent with the recent observations in the

exposure of labor income to aggregate fluctuations (Parker and Vissing-Jørgensen, 2009;

Guvenen et al., 2017).

The effects of the LNIS outweigh the effects of risk aversion (Figure 4). An increase

of risk aversion increases the human capital value in the absence of the LNIS. Intuitively,

as an individual’s risk aversion increases, she becomes increasingly likely to increase her

investment in (seemingly) riskless human capital than in the risky assets (increasing her

taking on market risk). In contrast, in the presence of the LNIS, an increase of risk aversion

decreases the human capital value, so it no longer serves as a substitute of riskless assets,

rather it resembles like a defaultable risky asset. Of course, the concern about the LNIS

increases as risk aversion increases.

Equilibrium Interest Rate. In the absence of the LNIS (δ = 0), the equilibrium interest

rate is 6.55%, but in the presence of the LNIS (δ > 0), it drops significantly (Figure 5).

This relationship implies the important discontinuity and dramatic change in the interest

rate even when δ is small. For instance, the equilibrium interest rate decreases 45.04%

30The wealthiest 400 Americans on the Forbes Magazine list own 1.5% of the total wealth in the US

(Kaplan and Rauh, 2013).
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Figure 5: Equilibrium interest rates. Parameter Values: β = 4% (subjective discount rate), γ = 2 (risk

aversion), µI = 1.52% (expected consumption growth rate), σI = 4.06% (volatility of consumption growth

rate), w = 1 (initial wealth), I = 1 (aggregate output), ξ = 0.5 (fraction constituting aggregate earnings),

and k = 20% (recovery rate). For the expected consumption growth rate and volatility of consumption

growth rate, µI and σI , we have used the Robert J. Shiller’s real monthly dividend data from 1926 to

2016 in “Irrational Exuberance” published by Princeton University Press. Note: In the absence of the

LNIS (δ = 0), the equilibrium interest rate is 6.55%, but in the presence of the LNIS (δ > 0), it drops

significantly, implying the important discontinuity and dramatic change in the interest rate even when δ

is small.

37



Figure 6: Equilibrium interest rates. Parameter Values: β = 4% (subjective discount rate), γ = 2 (risk

aversion), µI = 1.52% (expected consumption growth rate), σI = 4.06% (volatility of consumption growth

rate), w = 1 (initial wealth), I = 1 (aggregate output), ξ = 0.5 (fraction constituting aggregate earnings),

and k = 20% (recovery rate). Note: When δ > 0, high values of γ no longer counterfactually generage a

high risk-free interest rate, so the risk-free rate puzzle (Weil, 1990) is avoided. Rather, an increase in risk

aversion can lead to a decrease in risk-free rate in the presence of the LNIS.

(i.e., to 3.60%) as δ increases from 0 to 0.5%.

Risk aversion γ also affects the equilibrium risk-free interest rates (Figure 6). The

presence of the LNIS drives down the risk-free interest rate by stimulating the precautionary

savings mechanism. When δ > 0, high values of γ no longer counterfactually generate a

high risk-free interest rate, so the risk-free rate puzzle (Weil, 1990) is avoided. Rather,

an increase in risk aversion can lead to a decrease in risk-free rate in the presence of the

LNIS. The precautionary savings motive maintains the risk-free rate low. This result can

be understood in the context of the rate disaster hypothesis (Rietz, 1988).31 Consistent

31The rate disaster hypothesis arguably states that the slim chance of rare disasters (e.g., economic
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Estimated consumption and return parameters 1891-1994 1947.2-1996.3

Expected consumption growth rate µI 1.74% 1.91%

Consumption volatility σI 3.26% 1.08%

Stock Volatility σ 18.53% 15.22%

Risk-free rate r 1.96% 0.79%

Equity premium µ− r 6.26% 7.85%

Table 1: The table reports the annualized parameter values for consumption and return by Campbell

(1999) for the century-long sample (1891-1994) and the postwar sample (1947.2-1996.3).

with this hypothesis, the possibility of the LNIS can account for high risk premium on

bonds.

Matching Equity Premium and Risk-Free Rate. Using the LNIS, our equilibrium

results help match the observed risk-free rate and equity premium. We have tried to

match our model with the data taken from Campbell (1999): the century-long sample

from 1891 to 1994 and the postwar sample from 1947.2 to 1996.3 (Table 1). The presence

of the LNIS dramatically improves the model’s ability to match asset prices (Figure 7).

For a fixed subjective discount rate β = 0.04, our equilibrium risk-free rate and equity

premium with the LNIS (when δ = 0.005) match the century-long data much better than

crisis or war) can dominate the determinaiton of asset risk premia. The seminal work of Rietz (1988),

Barro (2006) and Gabaix (2012) have established different versions of the rate disaster hypothesis, thereby

explaining empirical regularities, such as the equity premium puzzle and the risk-free rate puzzle.
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the standard asset pricing model without the LNIS (when δ = 0) does. Not only the

standard asset pricing framework requires a risk aversion coefficient more than the upper

bound 10 (Mehra and Prescott, 1985) to match the equity premium of 6.64%, but it also

generates an excessively high risk-free rate, which gives rise to the risk-free rate puzzle.

While the equilibrium quantities generated by ours with the LNIS are much closer to the

century-long sample data reporting the equity premium of 6.64% and the risk-free rate of

1.64% with reasonable coefficients for risk aversion less than the upper bound 10.

The postwar sample is hard to match, because it is characterized by low consumption

and high stock volatilities (not reported). The standard asset pricing model is particularly

problematic because it requires a very high risk aversion coefficient to match the equity

premium of 7.89%. At the same time, the risk-free rate puzzle occurs as well due to such

a high coefficient for risk aversion. Our model with the LNIS is found to generate the

equity premium of 1.64% with the upper bound 10 of risk aversion, which is, of course,

much lower than the historical premium of 7.85%. However, our model partly explains the

risk-free rate of 1.35% with the risk aversion of 10, which is higher than the historical rate

of 0.79%.

The intuitive interpretation of our improved ability to match with the observed asset

prices is as follows. Individuals are inclined to be concerned with the observed equity

premium, because it seems too good to be true in the event of incoming catastrophic

earnings shock. The LNIS faced by individuals cause them likely to reduce consumption

to secure extra reserves as a precaution or to finance consumption needs by using their

savings. Such a conservative decision encourages reduction in equity investment, so the
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Figure 7: Equilibrium quantities. The figures show the equilibrium risk-free rate and equity premium

with risk aversion. For the parameter values of expected consumption growth rate and consumption

volatility, we have used the century-long sample (1891-1994) data in Table 1. The top figure and bottom

figure show the equilibrium quantities when δ = 0 (with no income shock) and δ = 0.005 (with income

shock). The subjective discount rate β is fixed to 0.04. Note: For a fixed subjective discount rate β = 0.04,

the equilibrium risk-free rate and equity premium with the LNIS (when δ = 0.005) match the century-long

data (the equity premium: 6.64% and the risk-free rate: 1.64%) much better than the standard asset

pricing model with the LNIS (when δ = 0) does.
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equity premium increases and the risk-free rate decreases.

6 Conclusion

We have developed an analytically tractable framework that generalizes Friedman’s per-

manent income hypothesis (PIH) by considering the possibility of a large, negative in-

come shock (LNIS). The generalized PIH with the optimal consumption and investment

strategies helps attain consumption smoothing when the LNIS occurs. We have quanti-

fied precautionary savings and calculated the required amount of savings for consumption

smoothing. We find an increasing and concave trend of the savings with respect to wealth

and that high-wealth people could save more than low-wealth people. Obviously, such

savings pattern would also alter existing portfolio strategy, suggesting wealth- and age-

dependent investment rule.

We have provided a general equilibrium analysis based on the Lucas-type pure exchange

economy. The equilibrium interest rate with the LNIS is obtained in closed-form. We find

that the substantial amount of extra precautionary savings for consumption smoothing,

driven by high-wealth people, should be reflected in the equilibrium asset pricing. We show

that the equilibrium interest rate would therefore fall dramatically even when the chance

of the LNIS is small; this result partly explains today’s low interest rates. Finally, our

equilibrium model’s ability to match asset prices observed in the data is greatly improved

with the LNIS.
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Online Appendix for “A Generalization of Friedman’s Permanent
Income Hypothesis with a Large, Negative Income Shock"

Steven Kou (Questrom School of Business, Boston University) and

Seyoung Park (Nottingham University Business School, University of Nottingham)

1 A Two-period Model

We start with a simple two-period model with a jump-type income shock for having a good motiva-

tion. We consider a representative economic agent who is searching for her optimal consumption and

investment strategies over the two periods: period 0 and period 1. The agent dies at the end of period

1 and the probability of her survival until time 1 is δ1. The objective of the agent is to maximize the

following utility function

v(c0) + δ2Ev(c1),

where v is a strictly increasing, strictly concave real-valued function defined on the set of positive real

numbers, 0 < δ2 < 1 is the subjective discount factor, and E denotes the expectation taken at time 0.

There are two tradable financial assets: a riskless bond and a risky stock. The riskless bond pays

1 at period 1 and its price is
1

R
at period 0, where R > 0 is the risk-free interest rate. The price of a

share of the risky stock is 1 at period 0 and can be u and d (u > R > d > 0) with probabilities πu

and πd = 1 − πu, respectively, at period 1. The agent obtains aggregate earnings at the rate of ε in

each period. There is a jump shock in her earnings that would cause a significant downward jump in

earnings from ε to 0 at period 1 with the probability of p. The probability distributions of the agent’s

mortality, the stock price, and the jump shock are assumed to be independent.

The budget constraint during period 1 is described as the following: for i ∈ {u, d},

W1i =


RwB0 + iwS0 + ε, if the income shock does not occur,

RwB0 + iwS0 , if the income shock occurs,

where wB0 is the dollar amount of savings invested in the riskless bond during period 0, and wS0 is the



dollar amount of savings invested in the risky stock during period 0.

The optimal consumption strategy c1i at period 1 for i ∈ {u, d} is to consume all of wealth W1i

available at period 1 i.e., c1i = W1i. The budget constraint during period 0 is given by

W0 + ε = c0 + wB0 + wS0 ,

where c0 is the optimal consumption strategy at period 0.

The agent’s optimization problem at period 0 is formulated by the following value function:

max
(wB0 ,w

S
0 )

[
v
(
W0 + ε− wB0 − wS0

)
+ δ2Ev

(
W1

)]
= max

(wB0 ,w
S
0 )

[
v
(
W0 + ε− wB0 − wS0

)
+ δ(1− p)

{
πuv

(
RwB0 + uwS0 + ε

)
+ πdv

(
RwB0 + dwS0 + ε

)}
+ δp

{
πuv

(
RwB0 + uwS0

)
+ πdv

(
RwB0 + dwS0

)}]
,

where δ ≡ δ1δ2. The first-order conditions for wB0 and wS0 are given by

v
′
(
W0 + ε− wB0 − wS0

)
= (1− p)δR

{
πuv

′
(
RwB0 + uwS0 + ε

)
+ πdv

′
(
RwB0 + dwS0 + ε

)}
+ pδR

{
πuv

′
(
RwB0 + uwS0

)
+ πdv

′
(
RwB0 + dwS0

)}
and

v
′
(
W0 + ε− wB0 − wS0

)
= (1− p)δ

{
πuv

′
(
RwB0 + uwS0 + ε

)
u+ πdv

′
(
RwB0 + dwS0 + ε

)
d
}

+ pδ
{
πuv

′
(
RwB0 + uwS0

)
u+ πdv

′
(
RwB0 + dwS0

)
d
}
,

respectively.

We assume the simplest possible utility function: v is quadratic and it is given by

v(c) = c− γc2,

where γ is a positive constant. Then the first-order conditions become linear equations and we can
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derive in closed-form the optimal strategies as the following:

wB0 =
[
δ{−1 + γ(W0 + ε)}{uπu(u−R)− dπd(R− d)}

+ δ{(1− p)γε− 1}{(uπu + dπd)−R(1− 2δudπuπd)}
]

/
γ
[
{1 + δR2}{1 + δ(u2πu + d2πd)} − {1 + δR(uπu + dπd)}2

]
,

wS0 =
[
δR{−1 + γ(W0 + ε)}(uπu + dπd −R)

+ δ{(1− p)γε− 1}{(uπu + dπd)−R}
]

/
γ
[
{1 + δR(uπu + dπd)}2 − {1 + δR2}{1 + δ(u2πu + d2πd)}

]
.

Notice that the premium term (uπu + dπd)− R on the risky stock can be reasonably assumed to

be positive. Then,
wS0
∂p

< 0.

This arguably states that the income shock reduces the dollar amount of savings invested in the risky

stock. However, we fully acknowledge that this result might depend upon the quadratic utility function

and two-period assumptions.

As far as we know, the first-order conditions when deriving the optimal strategies in an incomplete

market are highly non-linear. Those conditions are hardly possible to be solved analytically even for

the well-known cases such as the constant absolute risk aversion or the constant relative risk aversion

utility functions. If we extend the framework to multi-period settings, the situation is even worsen.

Starting from the next section, we will develop a very tractable continuous-time model in which

all the optimal strategies are derived in closed-form and the equilibrium asset prices are in closed-form

as well.
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2 A Continuous-Time Model

2.1 The Building Blocks

The Benchmark Problem. In the context of the consumption utility maximization framework, the

representative agent’s consumption-savings model can be formulated by

V B(w) ≡ sup
c
E
[ ∫ ∞

0
e−βtU

(
c(t)
)]
, (1)

subject to the following wealth process of the agent:

dW (t) = {rW (t)− c(t) + I}dt, W (0) = w > −I/r,

and

W (t) > −I
r
, for all t ≥ 0,

where r is the risk-free interest rate and I > 0 stands for reduced-form aggregate earnings.

Throughout the paper, we consider the following constant relative risk aversion (CRRA) utility

function:

U
(
c(t)
)

=
c(t)1−γ

1− γ
,

where γ > 0 is the constant coefficient for an agent’s relative risk aversion. We derive in closed-form

the solution of the optimization problem of (1):

V B(w) =
1

r

(rw + I)1−γ

1− γ
, w > −I/r.

Accordingly, we also derive in closed-form the optimal consumption-savings strategy:

c(t) = rw + I. (2)

The Permanent Income Hypothesis. We revisit the classic permanent income hypothesis of Fried-

man (1957) and Modigliani and Brumberg (1954) using the derived optimal strategy by (2). A little

rearrangement of the optimal consumption strategy (2) shows that the ratio of consumption to total

4



available financial resources is constant. More precisely,

c(t)

w + I/r
= r,

where the denominator w + I/r denotes total wealth comprised of financial wealth w and human

capital I/r, the present value of future aggregate earnings discounted at the risk-free rate (Friedman,

1957; Hall, 1978). Note that the marginal consumption with respect to financial wealth w is always

constant, predicting consumption smoothing. Intuitively, human capital strongly holds up total avail-

able financial resources and thus, people are able to attain the constant standard of living through

consumption smoothing as the permanent income hypothesis predicts.

In reality, people can choose to finance very large expenditures such as buying a car, buying a

house, sending their children to college, and so on, rather than directly relying on cash. Here, human

capital plays a key role in smoothing consumption as people can shift their earning power of labor

from high-income periods to low-income periods of life. In high-income periods people can finance

consumption needs by borrowing against their human capital, keeping cash in banks. In low-income

periods people can use their savings for the most satisfying standard of living.

The Optimal Consumption and Investment Problem in an Incomplete Market. We recollect the

representative agent’s optimal consumption and investment problem in an incomplete market specified

by the following stochastic optimization problem:

V (w, I) ≡ sup
(c,π)

E
[ ∫ ∞

0
e−(β+δ)t

(c(t)1−γ
1− γ

+ δK
{W (t) + kξI(t)/β1}1−γ

1− γ

)
dt
]
, (3)

with the following dynamic wealth constraint:

dW (t) = {rW (t)−c(t)+ξI(t)+π(t)>(µ−r1)}dt+π(t)>σ>dZ(t), W (0) = w > −ξI/β1, (4)

W (t) > −ξI(t)

β1
, for all t ≥ 0,

where

K = A−γ , A =
γ − 1

γ

(
r +
||θ||2

2γ

)
+
β

γ
, β1 = r − µI + (σI)>θ, θ = (σ>)−1(µ− r1).
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The technical details behind the derivation of the optimization problem (3) are given as follows.

We have assumed that the large, negative income shock is driven by a Poisson shock. On account of

such an assumption, the problem is the same as the traditional Merton’s (1969, 1971) case after the

arrival of the Poisson shock. That is, the agent’s problem after the Poisson shock is given by

V A(w, I) ≡ sup
(c,π)

E
[ ∫ ∞

0
e−βt

c(t)1−γ

1− γ
dt
]
, (5)

subject to

dW (t) = {rW (t)−c(t)+kξI(t)+π(t)>(µ−r1)}dt+π(t)>σ>dZ(t), W (0) = w > −ξI/β1, (6)

W (t) > −ξI(t)

β1
, for all t ≥ 0.

Note that the agent undergone the significant reduction in her aggregate earnings from ξI(t) to kξI(t),

k ∈ (0, 1), as identified in (6). Ultimately, the problem (5) belongs to the conventional utility-

maximizing framework in which it is optimal to maximize the consumption of goods and services

over the life cycle. Following Merton (1969, 1971), the problem is solved in closed-form:

V A(w, I) = K
{W (t) + kξI(t)/β1}1−γ

1− γ
. (7)

Before integrating out the Poisson intensity δ, the original problem should be given by

V (w, I) ≡ sup
(c,π)

E
[ ∫ τ

0
e−βt

c(t)1−γ

1− γ
dt+ e−βτV A(w, I)

]
,

where τ represents the arrival of the Poisson shock. After integrating out the Poisson intensity δ, the

problem stated above becomes the problem (3).

2.2 The Solution

Problem Reformulation. Following Karatzas et al. (1991), we come up with a fictitious asset, Sf (t),

and its price dynamics are given by

dSf (t) = µfSf (t)dt+ σfSf (t)dM(t),
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where µf and σf are to be determined under the minimal local martingale measure and M(t) is

a compensated martingale process related to a Poisson shock. Specifically, the dynamics of M(t)

follow

dM(t) = −δdt+ dN(t),

where N(t) represents the Poisson shock. By defining the market price of the income shock (driven

by the Poisson) shock as

δ̂ ≡ δ +
µf − r
σf

,

which will be called the income-shock-adjusted intensity. The state price densities are then character-

ized by

ξδ̂(t) ≡ exp
{

ln
( δ̂
δ

)
1{τ≤t} − (δ̂ − δ)t

}
H(t),

where 1 is an indicator function that gives 1 if the Poisson shock occurs at time t and 0 otherwise,

H(t) is the standard state price density in complete markets under no arbitrage and its dynamics are

given by

dH(t) = −H(t){rdt+ θ>dZ(t)}, H(0) = 1.

We provide a lemma to convert the dynamic wealth constraint in (4) into the static wealth con-

straint as follows.

Lemma 2.1. The dynamic wealth constraint in (4) can be converted into the following static wealth

constraint:

E
[ ∫ ∞

0
e−δ̂tH(t)

(
c(t)− ξI(t) + δ̂W (t)

)
dt
]
≤ w. (8)

Proof. See 3. Q.E.D.

With the help of Lemma 3.1, we are able to convert the original stochastic optimization problem

(3) into the following static optimization problem:

sup
(c,W )

E
[ ∫ ∞

0
e−(β+δ)t

(c(t)1−γ
1− γ

+ δK
{W (t) + kξI(t)/β1}1−γ

1− γ

)
dt
]
, (9)

subject to

E
[ ∫ ∞

0
e−δ̂tH(t)

(
c(t)− ξI(t) + δ̂W (t)

)
dt
]
≤ w.

7



We introduce another lemma to reformulate the problem (9) one more.

Lemma 2.2. The static optimization problem of (9) can be reformulated as

inf
(λ,δ̂)
{J δ̂(λ, I) + λw}

= inf
λ
{inf
δ̂
J δ̂(λ, I) + λw}

≡ inf
λ
{J(λ, I) + λw},

(10)

where the indirect value function J δ̂(λ, I) is given by

J δ̂(λ, I) = (ξI)1−γẼ
[ ∫ ∞

0
e−(β2+δ)t

{ γ

1− γ

(
1 + (δK)1/γ δ̂1−1/γ

)
Γδ̂(t)1−1/γ +

(
1 +

δ̂k

β1

)
Γδ̂(t)

}
dt
]

≡ (ξI)1−γϕδ̂(z)

(11)

with z = λ(ξI)γ , where Ẽ is the expectation under the new probability measure defined as

P̃ (A) ≡
∫
A

exp
(
− 1

2
(1− γ)2||σI ||2(t, ω) + (1− γ)(σI)>Z(t, ω)

)
dP (ω) for all A ∈ F

with the new Brownian motion process Z̃ given by

Z̃(t) = −(1− γ)σIdt+ Z(t),

Γδ̂(t) is a new state variable defined by

Γδ̂(t) ≡ λe(β+δ−δ̂)tH(t)(ξI(t))γ ,

and its dynamics are given by

dΓδ̂(t) = Γδ̂(t){−(β δ̂1 − β2)dt+ β3dZ̃(t)},

β δ̂1 = r − µI + (σI)>θ + δ̂ − δ,

β2 = β − µI(1− γ) +
1

2
γ(1− γ)||σI ||2,

β3 = γ(σI)> − θ>.

Proof. See 3. Q.E.D.
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Minimal Local Martingale Measure. In order to solve the reformulated problem (10), the income-

shock-adjusted intensity δ̂ should be determined appropriately to find the minimal local martingale

measure, guaranteeing the uniqueness of the state price density. Using the dynamic programming

approach of Bensoussan et al. (2016), we determine δ̂ uniquely.

Lemma 2.3. The income-shock-adjusted intensity δ̂ is determined uniquely by

δ̂ =
(
G(z)− 1

β1
+

k

β1

)−γ δK
z
, (12)

where G(z) = −ϕ′δ(z) + 1/β1 solves to the following non-linear differential equation:

−1

2
||β3||2z2G′′(z)− (||β3||2 + β2 + δ − β1)zG′(z)

+ β1G(z) + δK
(
G(z)− 1

β1
+

k

β1

)−γ
G′(z) = z−1/γ , 0 < z < z.

(13)

with the boundary conditions

G(z) = − L
ξI

+
1

β1
and G′(z) = 0.

Proof. See 3. Q.E.D.

Now, it remains to solve the non-linear differential equation (13) to characterize the income-shock-

adjusted intensity δ̂ explicitly.

Proposition 2.1. A general solution of the differential equation of (13) is given by

G(z) =
1

Â+ δ
z−1/γ +B∗(z; δ)z−α

∗
δ

+
2δK

||β3||2(αδ − α∗δ)(1− γ)

[
(αδ − 1)z−αδ

∫ z

0
µαδ−2

(
G(µ)− 1

β1
+

k

β1

)1−γ
dµ

+ (α∗δ − 1)z−α
∗
δ

∫ z

z
µα
∗
δ−2
(
G(µ)− 1

β1
+

k

β1

)1−γ
dµ
]
,

(14)

where Â is given by

Â =
γ − 1

γ

(
β1 +

||β3||2

2γ

)
+
β2
γ
,

9



B∗(z; δ) and z are the two constants to be determined by the boundary conditions:

G(z) = − L
ξI

+
1

β1
and G′(z) = 0,

and αδ > 1 and −1 < α∗δ < 0 are the two roots to the following characteristic equation:

F (α; δ) ≡ −1

2
||β3||2α(α− 1) + α(β2 + δ − β1)α+ β1 = 0.

Proof. See 3. Q.E.D.

3 Technical Details of Solution

In the main manuscript, we have provided analytically tractable results for the optimal strategies. In

this subsection, the associated technical details are given. To derive the main results, the most difficult

part is to solve the stochastic optimization problem (3). More specifically, the problem is inclined

to involve unwanted unlimited downside utilities with high possibilities. This is because the term in

(3) that involves the Poisson intensity δ is highly likely to be caught up in −∞ when borrowing is

allowed against human capital, i.e., as wealth W (t) approaches −ξI(t)/β1. The simplest approach to

remedy this problem is to introduce a time-varying lower bound of wealth:

W (t) > −L(t) > −kξI(t)

β1
, for all t ≥ 0, (15)

where L(t) is a given nonnegative time-varying function, but not completely arbitrary. With the help

of the lower bound of wealth in (15), now the problem (3) is well defined.

The State Price Density. Solving the stochastic optimization problem (3) involves many steps. One

of the most important steps is to characterize the unique state price density in an incomplete market.

This is a daunting task, as there exist infinitely many possible candidates for the state price density in

our economic setting, where not only the market risk, but also the income shock give rise to market

incompleteness. In order to address the issue associated with market incompleteness, we rely on the

fictitious completion of Karatzas et al. (1991). Specifically, we come up with a fictitious asset, Sf (t),
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and its price dynamics are given by

dSf (t) = µfSf (t)dt+ σfSf (t)dM(t),

where µf and σf are to be determined with the minimal local martingale measure and M(t) is a

compensated martingale process related to a Poisson shock. Specifically, the dynamics ofM(t) follow

dM(t) = −δdt+ dN(t),

where N(t) represents the Poisson shock. Given the following income-shock-adjusted intensity

δ̂ ≡ δ − µf − r
σf

,

the state price densities are then characterized by

ξδ̂(t) ≡ exp
{

ln
( δ̂
δ

)
1{τ≤t} − (δ̂ − δ)t

}
H(t),

where 1 is an indicator function that gives 1 if the Poisson shock occurs at time t and 0 otherwise,

H(t) is the standard state price density in complete markets under no arbitrage and its dynamics are

given by

dH(t) = −H(t){rdt+ θ>dZ(t)}, H(0) = 1.

Having characterized the state price densities in the presence of the income shock, we introduce one

important lemma to convert the dynamic wealth constraint in (4) into the static wealth constraint as

follows.

Lemma 3.1. The dynamic wealth constraint in (4) can be converted into the following static wealth

constraint:

E
[ ∫ ∞

0
e−δ̂tH(t)

(
c(t)− ξI(t) + δ̂W (t)

)
dt
]
≤ w. (16)

Proof. By applying Itô’s formula to d
(
e−rtW (t)

)
yields

d
(
e−rtW (t)

)
= −e−rt{c(t)− ξI(t)}dt+ e−rtπ(t)>dZ̃(t), (17)

where Z̃ is the Brownian motion process under the new martingale measure with respect to the state
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price density ξδ̂(t). By Girsanov’s theorem, the new probability measure is defined by

P̃ (A) ≡
∫
A
ertξδ̂(t, ω)dP (ω) for all A ∈ F (18)

and the Brownian motion process Z̃ follows

Z̃(t) ≡ θdt+ Z(t).

Integrating both sides of (17) from 0 to τ ,

∫ τ

0
e−rt

(
c(t)− ξI(t)

)
dt+ e−rτW (τ) = w +

∫ τ

0
e−rtπ(t)>dZ̃(t).

Taking expectation Ẽ under the new martingale measure,

Ẽ
[ ∫ τ

0
e−rt

(
c(t)− ξI(t)

)
dt+ e−rτW (τ)

]
≤ w.

Changing the martingale measure into the physical measure using the relationship of (18),

E
[ ∫ τ

0
ξδ̂(t)

(
c(t)− ξI(t)

)
dt+ ξδ̂(τ)W (τ)

]
≤ w.

Integrating out the Poisson intensity δ with respect to τ using the conditional expectation completes

the proof of the lemma. Q.E.D.

The Static Optimization Problem. With the help of Lemma 3.1, we solve the stochastic optimization

problem (3) by using the martingale representation approach in an incomplete market (Karatzas et al.,

1991), thereby converting the problem into the following static optimization problem:

sup
(c,W )

E
[ ∫ ∞

0
e−(β+δ)t

(c(t)1−γ
1− γ

+ δK
{W (t) + kξI(t)/β1}1−γ

1− γ

)
dt
]
, (19)

subject to

E
[ ∫ ∞

0
e−δ̂tH(t)

(
c(t)− ξI(t) + δ̂W (t)

)
dt
]
≤ w.

The optimization problem given by (19) seems to be almost impossible to be solved analytically.

We introduce a lemma to reformulate the optimization problem as follows.
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Lemma 3.2. The static optimization problem of (19) is reformulated as

inf
(λ,δ̂)
{J δ̂(λ, I) + λw}

= inf
λ
{inf
δ̂
J δ̂(λ, I) + λw}

≡ inf
λ
{J(λ, I) + λw},

(20)

where the indirect value function J δ̂(λ, I) is given by

J δ̂(λ, I) = (ξI)1−γẼ
[ ∫ ∞

0
e−(β2+δ)t

{ γ

1− γ

(
1 + (δK)1/γ δ̂1−1/γ

)
Γδ̂(t)1−1/γ +

(
1 +

δ̂k

β1

)
Γδ̂(t)

}
dt
]

≡ (ξI)1−γϕδ̂(z)

(21)

with z = λ(ξI)γ , where Ẽ is the expectation under the new probability measure defined by

P̃ (A) ≡
∫
A

exp
(
− 1

2
(1− γ)2||σI ||2(t, ω) + (1− γ)(σI)>dZ(t, ω)

)
dP (ω) for all A ∈ F

with the new Brownian motion process Z̃ given by

Z̃(t) = −(1− γ)σIdt+ Z(t),

Γδ̂(t) is a new state variable defined by

Γδ̂(t) ≡ λe(β+δ−δ̂)tH(t)(ξI(t))γ ,

and its dynamics are given by

dΓδ̂(t) = Γδ̂(t){−(β δ̂1 − β2)dt+ β3dZ̃(t)},

β δ̂1 = r − µI + (σI)>θ + δ̂ − δ,

β2 = β − µI(1− γ) +
1

2
γ(1− γ)||σI ||2,

β3 = γ(σI)> − θ>.

Proof. Using the standard Lagrangian approach, we can construct the indirect value function, J δ̂(λ, I),
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and it is given by

J δ̂(λ, I) ≡ sup
(c,W )

E
[ ∫ ∞

0
e−(β+δ)t

(c(t)1−γ
1− γ

+ δK
{W (t) + kξI(t)/β1}1−γ

1− γ

)
dt
]

−λE
[ ∫ ∞

0
e−δ̂tH(t)

(
c(t)− ξI(t) + δ̂W (t)

)
dt
]
.

(22)

Applying the first-order conditions for consumption c(t) and wealth W (t) gives rise to

c(t) =
(
λe(β+δ−δ̂)tH(t)

)−1/γ
,

W (t) =
(
λe(β+δ−δ̂)tH(t)

)−1/γ( δ̂
δ

)−1/γ
K1/γ − kξI(t)/β1.

(23)

The indirect value function in (22) can be rewritten when the above first-order conditions for con-

sumption and wealth are substituted in:

J δ̂(λ, I) = E
[ ∫ ∞

0
e−(β+δ)t

{ γ

1− γ

(
λe(β+δ−δ̂)tH(t)

)1−1/γ
+

γ

1− γ
(δK)1/γ δ̂1−1/γ

(
λe(β+δ−δ̂)tH(t)

)1−1/γ
+
(

1 +
δ̂k

β1

(
λe(β+δ−δ̂)tH(t)

)
ξI(t)

)}
dt
]
.

(24)

We introduce a new state variable to reformulate the indirect value function in (24). Specifically,

Γδ̂(t) ≡ λe(β+δ−δ̂)tH(t)(ξI(t))γ .

The indirect value function in (22) can be reformulated as the function of Γδ̂(t):

J δ̂(λ, I) = E
[ ∫ ∞

0
(ξI(t))1−γe−(β+δ)t

{ γ

1− γ

(
Γδ̂(t)1−1/γ + (δK)1/γ δ̂1−1/γΓδ̂(t)1−1/γ

)
+
(

1 +
δ̂k

β1

)
Γδ̂(t)

}
dt
]
.

By Girsanov’s Theorem, the new probability measure can be defined by

P̃ (A) ≡
∫
A

exp
(
− 1

2
(1− γ)2||σI ||2(t, ω) + (1− γ)(σI)>dZ(t, ω)

)
dP (ω) for all A ∈ F
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and the new Brownian motion process Z̃ is given by

Z̃(t) = −(1− γ)σIdt+ Z(t).

The dynamics of the new state variable follow

dΓδ̂(t) = Γδ̂(t){−(β δ̂1 − β2)dt+ β3dZ̃(t)},

where
β δ̂1 = r − µI + (σI)>θ + δ̂ − δ,

β2 = β − µI(1− γ) +
1

2
γ(1− γ)||σI ||2,

β3 = γ(σI)> − θ>.

As a result, the indirect value function is given by

J δ̂(λ, I) = (ξI)1−γẼ
[ ∫ ∞

0
e−(β2+δ)t

{ γ

1− γ

(
1 + (δK)1/γ δ̂1−1/γ

)
Γδ̂(t)1−1/γ +

(
1 +

δ̂k

β1

)
Γδ̂(t)

}
dt
]

≡ (ξI)1−γϕδ̂(z),

where z = λ(ξI)γ . Following Karatzas et al. (1999), the stochastic optimization problem (3) or

equivalently, the static optimization problem (19) essentially derives from the indirect value function

in (22) by the following relationship:

V (w, I) = inf
(λ,δ̂)
{J δ̂(λ, I) + λw}

= inf
λ
{inf
δ̂
J δ̂(λ, I) + λw}

≡ inf
λ
{J(λ, I) + λw},

which completes the proof. Q.E.D.

The Income-Shock-Adjusted Intensity. In the lemma, δ̂ is to be determined to find out the minimal

local martingale measure, guaranteeing the uniqueness of the state price density through which the risk

neutral probability measure can be constructed to give more weight to unwanted events resulting from

an unexpected, large, and negative income shock relative to the physical (or the original) probability
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measure. The following lemma determines the unique δ̂.

Lemma 3.3. The income-shock-adjusted intensity δ̂ is determined uniquely by

δ̂ =
(
G(z)− 1

β1
+

k

β1

)−γ δK
z
, (25)

where G(z) = −ϕ′δ(z) + 1/β1 solves to the following non-linear differential equation:

−1

2
||β3||2z2G′′(z)− (||β3||2 + β2 + δ − β1)zG′(z)

+ β1G(z) + δK
(
G(z)− 1

β1
+

k

β1

)−γ
G′(z) = z−1/γ , 0 < z < z.

(26)

with the boundary conditions

G(z) = − L
ξI

+
1

β1
and G′(z) = 0.

Proof. The function ϕδ̂(z) in (21) should satisfy the following non-linear ordinary differential equa-

tion by Feynman-Kac’s formula:

inf
δ̂

[1

2
||β3||2z2ϕ′′δ̂ (z)− (β δ̂1 − β2)zϕ′δ̂(z)− (β2 + δ)ϕδ̂(z)

+
γ

1− γ

(
1 + (δK)1/γ δ̂1−1/γ

)
z1−1/γ +

(
1 +

δ̂k

β1

)
z
]

= 0, 0 < z < z,

(27)

where
β δ̂1 = r − µI + (σI)>θ + δ̂ − δ,

β2 = β − µI(1− γ) +
1

2
γ(1− γ)||σI ||2,

β3 = γ(σI)> − θ>,

and z is to be determined according to the boundary conditions (or the value matching and smooth

pasting conditions) given by

ϕ′
δ̂
(z) =

L

ξI
, ϕ′′

δ̂
(z) = 0.

Note that the technical details behind the boundary conditions stated above are essentially the same

as Dybvig and Liu (2011). Applying the first-order condition for δ̂ leads to

δ̂ =
(
− ϕ′

δ̂
(z) +

k

β1

)−γ δK
z
. (28)
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When the above first-order condition is substituted in (27), the differential equation is rewritten as

1

2
||β3||2z2ϕ′′δ̂ (z)− (β1 − δ − β2)zϕ′δ̂(z)− (β2 + δ)ϕδ̂(z)

+
γ

1− γ
z1−1/γ + z +

δK

1− γ

(
− ϕ′

δ̂
(z) +

k

β1

)1−γ
= 0, 0 < z < z.

(29)

From now on, we will carry out several transformations to simplify the differential equation of

(29). We denote −ϕ′
δ̂
(z) by G̃(z). By differentiating the both sides of (29) with respect to z, the

differential equation (29) is restated with G̃(z) as follows:

−1

2
||β3||2z2G̃′′(z)− (||β3||2 + β2 + δ − β1)zG̃′(z)

+ β1G̃(z) + 1 + δK
(
G̃(z) +

k

β1

)−γ
G̃′(z) = z−1/γ , 0 < z < z,

(30)

with the boundary conditions

G̃(z) = − L
ξI

and G̃′(z) = 0.

We also denote G̃(z) + 1/β1 by G(z). Then the differential equation (30) is rewritten as

−1

2
||β3||2z2G′′(z)− (||β3||2 + β2 + δ − β1)zG′(z)

+ β1G(z) + δK
(
G(z)− 1

β1
+

k

β1

)−γ
G′(z) = z−1/γ , 0 < z < z.

with the boundary conditions

G(z) = − L
ξI

+
1

β1
and G′(z) = 0.

Finally, δ̂ given in (28) is rewritten as a function of G(z), which completes the proof. Q.E.D.

The Indirect Value Function.The relationship (20) shows that the optimization problem in (3) or

equivalently, the problem (19) is solved by deriving the indirect value function in (21) together with

the income-shock-adjusted intensity δ̂ in the lemma. Going forward, we devote our full attention to

solving the non-linear differential equation of (26) to derive the indirect value function J(λ, I) in (21).

Now, we introduce the important proposition to derive a general solution to the differential equa-

tion of (26).
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Proposition 3.1. A general solution to the differential equation of (26) is given by

G(z) =
1

Â+ δ
z−1/γ +B∗(z; δ)z−α

∗
δ

+
2δK

||β3||2(αδ − α∗δ)(1− γ)

[
(αδ − 1)z−αδ

∫ z

0
µαδ−2

(
G(µ)− 1

β1
+

k

β1

)1−γ
dµ

+ (α∗δ − 1)z−α
∗
δ

∫ z

z
µα
∗
δ−2
(
G(µ)− 1

β1
+

k

β1

)1−γ
dµ
]
,

(31)

where Â is given by

Â =
γ − 1

γ

(
β1 +

||β3||2

2γ

)
+
β2
γ
,

B∗(z; δ) and z are the two constants to be determined by the boundary conditions:

G(z) = − L
ξI

+
1

β1
and G′(z) = 0,

and αδ > 1 and −1 < α∗δ < 0 are the two roots to the following characteristic equations:

F (α; δ) ≡ −1

2
||β3||2α(α− 1) + α(β2 + δ − β1)α+ β1 = 0.

Proof. We conjecture a general solution of the equation (26) as

G(z) =
1

Â+ δ
z−1/γ + η(z)z−αδ + η∗(z)z−α

∗
δ , (32)

subject to

η′(z)z−αδ + (η∗(z))′z−α
∗
δ = 0,

where αδ > 1 and −1 < α∗δ < 0 are the two roots to the following characteristic equations:

F (α; δ) ≡ −1

2
||β3||2α(α− 1) + α(β2 + δ − β1)α+ β1 = 0.

Direct calculations of the first and second derivative of G result in

G′(z) = − 1

γ(Â+ δ)
z−1/γ−1 − αδη(z)z−αδ−1 − α∗δη∗(z)z−α

∗
δ−1
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and

G′′(z) =
(

1 +
1

γ

) 1

γ(Â+ δ)
z−1/γ−2 − αδη′(z)z−αδ−1 + αδ(αδ + 1)η(z)z−αδ−2

− α∗δ(η∗(z))′z−α
∗
δ−1 + α∗δ(α

∗
δ + 1)η∗(z)z−α

∗
δ−2.

Using the general solution (32) and the derivatives of G stated above, the first three terms of left-hand

side in (26) become

− 1

2
||β3||2z2G′′(z)− (||β3||2 + β2 + δ − β1)zG′(z) + β1G(z)

= z−1/γ +
||β3||2

2
(αδ − α∗δ)z1−αδη′(z)

= z−1/γ − ||β3||
2

2
(αδ − α∗δ)z1−α

∗
δ (η∗(z)).

As a result, the differential equation (26) simplifies to the following: for 0 < z < z,

||β3||2

2
(αδ − α∗δ)z1−αδη′(z) = −δK

(
G(z)− 1

β1
+

k

β1

)−γ
G′(z)

and
||β3||2

2
(αδ − α∗δ)z1−α

∗
δ (η∗(z)) = δK

(
G(z)− 1

β1
+

k

β1

)−γ
G′(z).

Integrating the both sides of the above two relationships from 0 to z and from z to z allows η(z) and

η∗(z) to be expressed as an integral form:

η(z) = − 2δK

||β3||2(αδ − α∗δ)

∫ z

0
µαδ−1

(
G(µ)− 1

β1
+

k

β1

)−γ
G′(µ)dµ

and

η∗(z) = η∗(z)− 2δK

||β3||2(αδ − α∗δ)

∫ z

z
µα
∗
δ−1
(
G(µ)− 1

β1
+

k

β1

)−γ
G′(µ)dµ.

Therefore, the general solution (32) also can be expressed as an integral form:

G(z) =
1

Â+ δ
z−1/γ + η∗(z)z−α

∗
δ − 2δK

||β3||2(αδ − α∗δ)

[
z−αδ

∫ z

0
µαδ−1

(
G(µ)− 1

β1
+

k

β1

)−γ
G′(µ)dµ

+ z−α
∗
δ

∫ z

z
µα
∗
δ−1
(
G(µ)− 1

β1
+

k

β1

)−γ
G′(µ)dµ

]
.

(33)
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Note that (
G(µ)− 1

β1
+

k

β1

)−γ
G′(µ) =

d

dµ

{ 1

1− γ

(
G(µ)− 1

β1
+

k

β1

)1−γ}
.

Using the integration by parts, the general solution (33) can be restated as follows:

G(z) =
1

Â+ δ
z−1/γ +

{
η∗(z) + zα

∗
δ−1

1

1− γ

(
G(z)− 1

β1
+

k

β1

)1−γ}
z−α

∗
δ

+
2δK

||β3||2(αδ − α∗δ)(1− γ)

[
(αδ − 1)z−αδ

∫ z

0
µαδ−2

(
G(µ)− 1

β1
+

k

β1

)1−γ
dµ

+ (α∗δ − 1)z−α
∗
δ

∫ z

z
µα
∗
δ−2
(
G(µ)− 1

β1
+

k

β1

)1−γ
dµ
]
.

(34)

Defining a constant B∗(z; δ) as

B∗(z; δ) ≡ η∗(z) + zα
∗
δ−1

1

1− γ

(
G(z)− 1

β1
+

k

β1

)1−γ
.

Finally, we obtain the general solution in closed-form:

G(z) =
1

Â+ δ
z−1/γ +B∗(z; δ)z−α

∗
δ

+
2δK

||β3||2(αδ − α∗δ)(1− γ)

[
(αδ − 1)z−αδ

∫ z

0
µαδ−2

(
G(µ)− 1

β1
+

k

β1

)1−γ
dµ

+ (α∗δ − 1)z−α
∗
δ

∫ z

z
µα
∗
δ−2
(
G(µ)− 1

β1
+

k

β1

)1−γ
dµ
]
,

which completes the proof. Q.E.D.

Optimal Consumption and Investment Strategies. Now, we are ready to derive the analytic results

of optimal consumption and investment strategies.

Theorem 3.1. The optimal strategies for consumption c(t) and risky stock investment π(t) are ob-

tained in closed-form as follows:

c(t) = (Â+ δ)
[
w +

ξI

β1
− ξIB∗(z; δ)z−α∗δ

− {income risk-driven precautionary savings}
]
,

(35)
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π(t) = σ−1(β3)
>ξIG′(z)z + σ−1σIw

= σ−1(γσI − θ)ξIG′(z)z + σ−1σIw

=
1

γ
σ−1θw

+
1

γ
σ−1(θ − γσI)

[ξI
β1

+ (γα∗δ − 1)ξIB∗(z; δ)z−α
∗
δ

− 2γ

||β3||2
δK

(
w +

kξI

β1

)1−γ
1− γ

/
c(t)−γ

+ (γαδ − 1)× {first term of income risk-driven precautionary savings}

+ (γα∗δ − 1)× {second term of income risk-driven precautionary savings}
]
,

(36)

where the income risk-driven precautionary savings are given by

2δKξI

||β3||2(αδ − α∗δ)(1− γ)

[
(αδ − 1)z−αδ

∫ z

0
µαδ−2

(
G(µ)− 1

β1
+

k

β1

)1−γ
dµ

+ (α∗δ − 1)z−α
∗
δ

∫ z

z
µα
∗
δ−2
(
G(µ)− 1

β1
+

k

β1

)1−γ
dµ
]
.

For simplicity, the income risk-driven precautionary savings are rewritten as

{income risk-driven precautionary savings}

= {first term of income risk-driven precautionary savings}

+ {second term of income risk-driven precautionary savings},

(37)

where the first term is given by

2δK(αδ − 1)ξI

||β3||2(αδ − α∗δ)(1− γ)
z−αδ

∫ z

0
µαδ−2

(
G(µ)− 1

β1
+

k

β1

)1−γ
dµ < 0,

and the second term is given by

2δK(α∗δ − 1)ξI

||β3||2(αδ − α∗δ)(1− γ)
z−α

∗
δ

∫ z

z
µα
∗
δ−2
(
G(µ)− 1

β1
+

k

β1

)1−γ
dµ > 0.

Proof. With the first-order condition (25) for δ̂, the first-order conditions for consumption c(t) in (23)

can be rewritten as

c(t) = ξI(t)Γδ̂(t)−1/γ , (38)
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where Γδ̂(t) is given by

Γδ̂(t) = λe(β+δ−δ̂)tH(t)(ξI(t))γ ,

and

δ̂ =
(
G(Γδ̂(t))− 1

β1
+

k

β1

)−γ δK

Γδ̂(t)

By the principle of dynamic programming, it is convenient to express the consumption as a function

of initial variable z:

c(t) = c(0) = ξIz−1/γ . (39)

From the relationship (20) between the value function and the indirect value function, applying the

first-order condition for λ results in

w = −Jλ(λ, I)

= −ξIϕ′
δ̂
(z)

= ξIG̃(z)

= ξI
(
G(z)− 1

β1

)
,

(40)

accordingly,

G(z) =
w

ξI
+

1

β1
.

A little rearrangement of the general solution (31) leads to

z−1/γ = (Â+ δ)
[
G(z)−B∗(z; δ)z−α∗δ

− 2δK

||β3||2(αδ − α∗δ)(1− γ)

[
(αδ − 1)z−αδ

∫ z

0
µαδ−2

(
G(µ)− 1

β1
+

k

β1

)1−γ
dµ

+ (α∗δ − 1)z−α
∗
δ

∫ z

z
µα
∗
δ−2
(
G(µ)− 1

β1
+

k

β1

)1−γ
dµ
]

= (Â+ δ)
[ w
ξI

+
1

β1
−B∗(z; δ)z−α∗δ

− 2δK

||β3||2(αδ − α∗δ)(1− γ)

[
(αδ − 1)z−αδ

∫ z

0
µαδ−2

(
G(µ)− 1

β1
+

k

β1

)1−γ
dµ

+ (α∗δ − 1)z−α
∗
δ

∫ z

z
µα
∗
δ−2
(
G(µ)− 1

β1
+

k

β1

)1−γ
dµ
]
.

Therefore, the first-order condition for consumption c(t) in (38) allows the following optimal con-
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sumption strategy:

c(t) = (Â+ δ)
[
w +

ξI

β1
− ξIB∗(z; δ)z−α∗δ

− {income risk-driven precautionary savings}
]
,

where the income risk-driven precautionary savings are given by

2δKξI

||β3||2(αδ − α∗δ)(1− γ)

[
(αδ − 1)z−αδ

∫ z

0
µαδ−2

(
G(µ)− 1

β1
+

k

β1

)1−γ
dµ

+ (α∗δ − 1)z−α
∗
δ

∫ z

z
µα
∗
δ−2
(
G(µ)− 1

β1
+

k

β1

)1−γ
dµ
]
.

For simplicity, the income risk-driven precautionary savings are rewritten as

{income risk-driven precautionary savings}

= {first term of income risk-driven precautionary savings}

+ {second term of income risk-driven precautionary savings},

where the first term is given by

2δK(αδ − 1)ξI

||β3||2(αδ − α∗δ)(1− γ)
z−αδ

∫ z

0
µαδ−2

(
G(µ)− 1

β1
+

k

β1

)1−γ
dµ < 0,

and the second term is given by

2δK(α∗δ − 1)ξI

||β3||2(αδ − α∗δ)(1− γ)
z−α

∗
δ

∫ z

z
µα
∗
δ−2
(
G(µ)− 1

β1
+

k

β1

)1−γ
dµ > 0.

It remains to derive the optimal investment strategy. A little rearrangement of the relationship in

(40) gives
w

ξI
= G(z)− 1

β1
,

or equivalently,
W (t)

ξI(t)
= G(Γδ̂(t))− 1

β1
. (41)
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By applying Itô’s formula to the left hand side of the above relationship,

d
(W (t)

ξI(t)

)
= dW (t)

1

ξI(t)
+W (t)d

( 1

ξI(t)

)
+ dW (t)d

( 1

ξI(t)

)
=
[{
rW (t)− c(t) + ξI(t) + π(t)>(µ− r1)

}
dt+ π(t)>σ>dZ(t)

] 1

ξI(t)

+W (t)
[
− (ξI(t))−2dI(t) + (ξI(t))−3(dI(t))2

]
+
[{
rW (t)− c(t) + ξI(t) + π(t)>(µ− r1)

}
dt+ π(t)>σ>dZ(t)

]
×
[
− (ξI(t))−2dI(t) + (ξI(t))−3(dI(t))2

]
=
[{
rW (t)− c(t) + ξI(t) + π(t)>(µ− r1)

}
dt+ π(t)>σ>dZ(t)

] 1

ξI(t)

+W (t)
[
− (ξI(t))−1{µIdt+ (σI)>dZ(t)}+ (ξI(t))−1||σI ||2dt

]
+
[{
rW (t)− c(t) + ξI(t) + π(t)>(µ− r1)

}
dt+ π(t)>σ>dZ(t)

]
×
[
− (ξI(t))−1{µIdt+ (σI)>dZ(t)}+ (ξI(t))−1||σI ||2dt

]
=
[{
rW (t)− c(t) + ξI(t) + π(t)>(µ− r1)

}
dt+ π(t)>σ>dZ(t)

] 1

ξI(t)

+
W (t)

ξI(t)

[
− (µI − ||σI ||2)dt− (σI)>dZ(t)

]
− (ξI(t))−1π(t)>σ>σIdt

=
1

ξI(t)

[{
rW (t)− c(t) + ξI(t) + π(t)>(µ− r1)−W (t)(µI − ||σI ||2)− π(t)>σ>σI

}
dt

+ {π(t)>σ> −W (t)(σI)>}dZ(t)
]

=
1

ξI(t)

[{
{r − µI + ||σI ||2}W (t)− c(t) + ξI(t) + π(t)>{µ− r1− σ>σI}

}
dt

+ {π(t)>σ> −W (t)(σI)>}dZ(t)
]
.

(42)

By applying Itô’s formula to the right hand side of the relationship (41),

dG(Γδ̂(t)) = G′(Γδ̂(t))dΓδ̂(t) +
1

2
G′′(Γδ̂(t))(dΓδ̂(t))2

= G′(Γδ̂(t))Γδ̂(t){−(β δ̂1 − β2)dt+ β3dZ̃(t)}+
1

2
G′′(Γδ̂(t))(Γδ̂(t))2||β3||2dt

= G′(Γδ̂(t))Γδ̂(t){−(β δ̂1 − β2)dt+ β3{−(1− γ)σIdt+ dZ(t)}+
1

2
G′′(Γδ̂(t))(Γδ̂(t))2||β3||2dt

=
{
−G′(Γδ̂(t))Γδ̂(t){(β δ̂1 − β2) + (1− γ)β3σ

I}+
1

2
G′′(Γδ̂(t))(Γδ̂(t))2||β3||2

}
dt

+G′(Γδ̂(t))Γδ̂(t)β3dZ(t).

(43)

Equating each term of dZ(t) in d(W (t)/(ξI(t))) and dG(Γδ̂(t)) derives the following relationship
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that involves the optimal investment strategy π(t):

π(t)>σ> −W (t)(σI)>

ξI(t)
= G′(Γδ̂(t))Γδ̂(t)β3. (44)

By the principle of dynamic programming, it is convenient to express the investment as a function of

initial variables at time 0:
π>σ> − w(σI)>

ξI
= G′(z)zβ3, (45)

where π = π(t) = π(0). Using the general solution G(z) given in (31), a direct calculation of G′(z)

yields

G′(z) =− 1

γ(Â+ δ)
z−1/γ−1 − α∗δB∗(z; δ)z−α

∗
δ−1 +

2δK

||β3||2(1− γ)z2

(
G(z)− 1

β1
+

k

β1

)1−γ
− 2δKαδ(αδ − 1)

||β3||2(αδ − α∗δ)(1− γ)
z−αδ−1

∫ z

0
µαδ−2

(
G(µ)− 1

β1
+

k

β1

)1−γ
dµ

−
2δKα∗δ(α

∗
δ − 1)

||β3||2(αδ − α∗δ)(1− γ)
z−α

∗
δ−1

∫ z

0
µα
∗
δ−2
(
G(µ)− 1

β1
+

k

β1

)1−γ
dµ.

Multiply G′(z) by ξIz gives

ξIG′(z)z =− 1

γ(Â+ δ)
ξIz−1/γ − α∗δξIB∗(z; δ)z−α

∗
δ +

2δKξI

||β3||2(1− γ)z

(
G(z)− 1

β1 +
k

β1

+
)1−γ

− αδ × {first term of income risk-driven precautionary savings}

− α∗δ × {second term of income risk-driven precautionary savings},

where the first and second term of income risk-driven precautionary savings are given in (37). Note

that ξIz−1/γ of the first term in the above relationship is equivalent to the optimal consumption strat-

egy from (39), as a result, ξIG′(z)z can be restated with (35) as the following:

ξIG′(z)z = −1

γ

[
w +

ξI

β1
+ (γα∗δ − 1)ξIB∗(z; δ)z−α

∗
δ

− 2γ

||β3||2(1− γ)z
ξIδK

(
G(z)− 1

β1
+

k

β1

)1−γ
+ (γαδ − 1)× {first term of income risk-driven precautionary savings}

+ (γα∗δ − 1)× {second term of income risk-driven precautionary savings}
]
.
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Note that
− 2γ

||β3||2(1− γ)z
ξIδK

(
G(z)− 1

β1
+

k

β1

)1−γ

= − 2γ

||β3||2z
ξIδK

( w
ξI

+
k

β1

)1−γ
1− γ

= − 2γ

||β3||2z
(ξI)γδK

(
w +

kξI

β1

)1−γ
1− γ

= − 2γ

||β3||2
δK

(
w +

kξI

β1

)1−γ
1− γ

c(t)γ

= − 2γ

||β3||2
δK

(
w +

kξI

β1

)1−γ
1− γ

/
c(t)−γ .

Therefore, we derive the optimal investment strategy from (45):

π(t) = σ−1(β3)
>ξIG′(z)z + σ−1σIw

= σ−1(γσI − θ)ξIG′(z)z + σ−1σIw

=
1

γ
σ−1θw

+
1

γ
σ−1(θ − γσI)

[ξI
β1

+ (γα∗δ − 1)ξIB∗(z; δ)z−α
∗
δ

− 2γ

||β3||2
δK

(
w +

kξI

β1

)1−γ
1− γ

/
c(t)−γ

+ (γαδ − 1)× {first term of income risk-driven precautionary savings}

+ (γα∗δ − 1)× {second term of income risk-driven precautionary savings}
]
.

Until now, we have derived the optimal consumption and investment strategies, c(t) and π(t),

in closed-form in (35) and (36), respectively, together with the income-shock-adjusted intensity δ̂ in

(25). Following Karatzas et al. (1991), the optimality would be verified if the wealth process W (t)
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was self financed by c(t) and π(t). The term of dt of dG(Γδ̂(t)) in (43) is rewritten as

−G′(Γδ̂(t))Γδ̂(t){(β δ̂1 − β2) + (1− γ)β3σ
I}+

1

2
G′′(Γδ̂(t))(Γδ̂(t))2||β3||2

=
1

2
||β3||2(Γδ̂(t))2G′′(Γδ̂(t)) + {β2 − β1 − δ̂ + δ − (1− γ)β3σ

I}Γδ̂(t)G′(Γδ̂(t))

=
1

2
||β3||2(Γδ̂(t))2G′′(Γδ̂(t)) + (β2 + δ − β1)Γδ̂(t)G′(Γδ̂(t))− (1− γ)β3σ

IΓδ̂(t)G′(Γδ̂(t))

−
(
G(Γδ̂(t))− 1

β1
+

k

β1

)−γ δK

Γδ̂(t)
Γδ̂(t)G′(Γδ̂(t))

=
1

2
||β3||2(Γδ̂(t))2G′′(Γδ̂(t)) + (β2 + δ − β1)Γδ̂(t)G′(Γδ̂(t))− δK

(
G(Γδ̂(t))− 1

β1
+

k

β1

)−γ
G′(Γδ̂(t))

− (1− γ)Γδ̂(t)G′(Γδ̂(t))β3σ
I

= −||β3||2Γδ̂(t)G′(Γδ̂(t)) + β1G(Γδ̂(t))− Γδ̂(t)−1/γ − (1− γ)Γδ̂(t)G′(Γδ̂(t))β3σ
I

= −π(t)>σ> −W (t)(σI)>

ξI(t)
(β3)

> + β1

(W (t)

ξI(t)
+

1

β1

)
− c(t)

ξI(t)
− (1− γ)

π(t)>σ> −W (t)(σI)>

ξI(t)
σI

=
1

ξI(t)

[
{(σI)>(β3)

> + β1}W (t)− c(t) + ξI(t)− π(t)>σ>(β3)
> − (1− γ)π(t)>σ>σI + (1− γ)||σI ||2W (t)

]
=

1

ξI(t)

[
{(σI)>(γσI − θ) + r − µI + (σI)>θ}W (t)− c(t) + ξI(t)− π(t)>σ>(γσI − θ)

− (1− γ)π(t)>σ>σI + (1− γ)||σI ||2W (t)
]

=
1

ξI(t)

[
{r − µI + γ||σI ||2}W (t)− c(t) + ξI(t) + π(t)>{µ− r1− σ>σI}

]
.

where the second equality derives when δ̂ in (25) substituted in, the fourth equality derives from the

differential equation in (26), the fifth equality derives from ||β3||2 = β(β3)
>, (38), (41), and (44).

This shows that each term of dt in d(W (t)/(ξI(t))) and dG(Γδ̂(t)) are exactly the same, as a result,

the wealth process W (t) is self financed by the optimal consumption strategy c(t) and the optimal

investment strategy π(t) with the income-shock-adjusted intensity δ̂ in (25). Q.E.D.

4 Technical Details of a General Equilibrium Analysis

In the main manuscript, we have derived the general equilibrium quantities in the presence of the

large, negative income shock. We consider a simple exchange economy in the style of Lucas (1978).

The economy is populated by a representative agent facing an unexpected, large, and negative income

shock. The agent is entitled to an endowment to be consumed in equilibrium and is assumed to trade

a riskless bond and multiple risky stocks distributing the dividend. The returns to these assets adjust
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to represent a no-trade equilibrium. The risk-free interest rate, r, the constant mean vector, µ, and

the constant nonsingular standard deviation matrix, σ, should be determined from the equilibrium

conditions, as specified below:

Definition 4.1. An equilibrium can be characterized as a collection of (r, µ, σ) and optimal strategies

(c(t), π(t)) such that the consumption good, stock, and bond markets clear as

c(t) = D(t),

πj(t) = Sj(t), j = 1, ..., N,

W (t) =
N∑
j=1

Sj(t),

where D(t) =
∑N

j=1 dj is the aggregate dividend process and N is the number of risky stocks.

The following proposition provides the unique state price density in the presence of the market

risk and the income shock.

Proposition 4.1. The unique state price density is given by

ξδ̂(t) = exp
{

ln
( δ̂
δ

)
1{τ=t} − (δ̂ − δ)t

}
H(t), (46)

where

δ̂ =
(
G(z)− 1

β1
+

k

β1

)−γ δK
z
,

τ is the arrival time of a Poisson shock, 1 is an indicator function that gives 1 if the Poisson shock

occurs at time t and 0 otherwise, G(z) satisfies the following differential equation:

−1

2
||β3||2z2G′′(z)− (||β3||2 + β2 + δ − β1)zG′(z)

+ β1G(z) + δK
(
G(z)− 1

β1
+

k

β1

)−γ
G′(z) = z−1/γ , 0 < z < z,

(47)

with

G(z) = − L
ξI

+
1

β1
, G′(z) = 0,

and the dynamics of H(t) are given by

dH(t) = −H(t){rdt+ θ>dZ(t)}, H(0) = 1.
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Proof. See 3. Q.E.D.

Given the unique state price density, the following proposition solves for the equilibrium state

price density, and the equilibrium risk-free interest rate and the equilibrium Sharpe ratio.

Proposition 4.2. The equilibrium state price density is given by

H(t) =
1

λ
e−(β−(δ̂(r)−δ))t(ξI(t))−γ , (48)

the equilibrium risk-free interest rate and the equilibrium Sharpe ratio are given by

r = β + γµI − 1

2
γ(1 + γ)(σI)2 − (δ̂(r)− δ) (49)

and

θ = γσI , (50)

respectively, where µI and σI represent the expected consumption growth rate and volatility of con-

sumption growth rate, and the constant δ̂(r) is determined by solving the following non-linear alge-

braic equation:

δ̂(r) =
{( w

ξI
+

1

β1(δ̂(r))

)/( w
ξI

+
k

β1(δ̂(r))

)}γ
{β1(δ̂(r))}γδK(r)

with

β1(δ̂(r)) = β + (γ − 1)µI − 1

2
γ(γ − 1)(σI)2 − (δ̂(r)− δ),

K(r) =
{γ − 1

γ

(
r +

γ(σI)2

2

)
+
β

γ

}−γ
,

and the constant λ satisfies

E
[ ∫ ∞

0
e−δ̂(r)tH(t)

{
c(t)− ξI(t) + δ̂(r)W (t)

}
dt
]

= w, (51)

c(t) =
(
λe(β+δ−δ̂(r))tH(t)

)−1/γ
, W (t) =

(
λe(β+δ−δ̂(r))tH(t)

)−1/γ( δ̂(r)
δ

)−1/γ
K1/γ− kξI(t)

β1(δ̂(r))
,

with (48), (49), and (50) substituted in.
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Proof. The optimal consumption strategy derives from (23):

c(t) =
(
λe(β+δ−δ̂(r))tH(t)

)−1/γ
,

where the constant λ should satisfy

E
[ ∫ ∞

0
e−δ̂(r)tH(t)

{
c(t)− ξI(t) + δ̂(r)W (t)

}
dt
]

= w

with the following optimal wealth process:

W (t) =
(
λe(β+δ−δ̂(r))tH(t)

)−1/γ( δ̂(r)
δ

)−1/γ
K1/γ − kξI(t)

β1(δ̂(r))
,

and δ̂(r) is given by Proposition 4.1 as follows:

δ̂(r) =
(
G(z)− 1

β1(δ̂(r))
+

k

β1(δ̂(r))

)−γ δK
z
, (52)

where G(z) solves the differential equation of (47) with

G(z) = − L
ξI

+
1

β1(δ̂(r))
, G′(z) = 0.

According to the clearing condition of consumption good, c(t) = D(t), the equilibrium state price

density H(t) follows

H(t) =
1

λ
e−(β−(δ̂(r)−δ))tD(t)−γ ,

or equivalently,

H(t) =
1

λ
e−(β−(δ̂(r)−δ))t(ξI(t))−γ . (53)

Applying Itô’s formula to the both sides of (53),

−H(t){rdt+ θ>dZ(t)}

= −H(t)
{(
β − (δ̂(r)− δ) + γµI − 1

2
γ(1 + γ)||σI ||2

)
dt+ γ(σI)>dZ(t)

}
.

Equating each term of dt and dZ(t) gives the equilibrium risk-free interest rate and the equilibrium

Sharpe ratio.
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With the equilibrium quantities (49) and (50), and the clearing conditions of stock and bond mar-

kets, the differential equation of (47) has a solution in closed-form:

G(z) =
1

β1(δ̂(r))
z−1/γ .

By substituting the solution G(z) in (52), δ̂(r) is determined by

δ̂(r) =
( 1

β1(δ̂(r))
z−1/γ − 1

β1(δ̂(r))
+

k

β1(δ̂(r))

)−γ δK
z
. (54)

Recall the relationship (40)

w = ξI
(
G(z)− 1

β1(δ̂(r))

)
,

accordingly,
1

β1(δ̂(r))
z−1/γ =

w

ξI
+

1

β1(δ̂(r))
,

or equivalently,

z−1 = βγ1

( w
ξI

+
1

β1(δ̂(r))

)γ
.

As a result, the equation (54) reduces to

δ̂(r) =
{( w

ξI
+

1

β1(δ̂(r))

)/( w
ξI

+
k

β1(δ̂(r))

)}γ
βγ1 δK

with
β1(δ̂(r)) = r − µI + (σI)>θ

= β + γµI − 1

2
γ(1 + γ)||σI ||2 − (δ̂(r)− δ)− µI + (σI)>θ

= β + (γ − 1)µI − 1

2
γ(γ − 1)||σI ||2 − (δ̂(r)− δ),

where the second equality derives from the substitution of (49) and the third equality comes from the

substitution of (50). This completes the proof. Q.E.D.

5 Technical Details of Quantitative Analysis

Data Description. The data on wealth and income are from family net worth and before tax family

income by selected characteristics of families in the SCF for the period of 1995-2010. We sort the

family net worth and before tax family income into age groups and percentile of net worth, and use
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them to compute the normalized cash-on-hand, which is the ratio of net worth to income. We find

from the data that the family net worth (before tax family income) by age groups shows a hump-

shaped profile; until age of 55-64 (45-54) the net worth (the family income) increases with age, but

subsequently falls with age on average. The net worth and the family income increase with an increase

in percentile of net worth.

Lower Bound of Wealth. Recall that the lower bound−L(t) with L(0) = L of wealth in (15) can be

empirically plausible by using the following relationship:

L = ω
r + ν + δk

(r + ν + δ)(r + ν)
ε, for 0 ≤ ω < 1, (55)

where ε = ξI represents a constant stream of earnings over the life cycle, ω denotes the extent to

which credit is tightened, and ν is an individual’s constant mortality intensity by assuming that the

time to death is distributed with an exponential distribution.

Now, we will verify the relationship of (55). Following Friedman (1957) and Hall (1978), the

present value of future earnings is calculated by their discounted value at the risk-free interest rate.

More specifically, with the stochastic life-cycle earnings ε(t) given by

ε(t) =


ε, if 0 ≤ t < τ ∧ τν ,

kε, if τ ≤ t < τν ,

0, if t ≥ τν ,
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the present value of future life-cycle earnings follows

E
[ ∫ τ∧τν

0
e−rtε(t)dt+ e−r(τ∧τ

ν)

∫ ∞
τ∧τν

e−r(t−τ∧τ
ν)ε(t)dt

]
= E

[ ∫ ∞
0

νe−νs
∫ τ∧s

0
e−rtε(t)dtds+

∫ ∞
0

νe−νse−r(τ∧s)
∫ ∞
τ∧s

e−r(t−τ∧s)ε(t)dtds
]

= E
[ ∫ τ

0
νe−νs

∫ s

0
e−rtεdtds+

∫ ∞
τ

νe−νs
∫ τ

0
e−rtεdtds

+

∫ τ

0
νe−νse−rs

∫ ∞
s

e−r(t−s)0dtds+

∫ ∞
τ

νe−νse−rτ
∫ s

τ
e−r(t−τ)kεdtds

]
= E

[ ∫ τ

0
e−rtε

∫ τ

t
νe−νsdsdt+

∫ τ

0
e−rtε

∫ ∞
τ

νe−νsdsdt+

∫ ∞
τ

e−rtkε

∫ ∞
t

νe−νsdsdt
]

= E
[ ∫ τ

0
e−rtε

∫ ∞
t

νe−νsdsdt+

∫ ∞
τ

e−rtkε

∫ ∞
t

νe−νsdsdt
]

= E
[ ∫ τ

0
e−(r+ν)tεdt+

∫ ∞
τ

e−(r+ν)tkεdt
]

=

∫ ∞
0

δe−δs
∫ s

0
e−(r+ν)tεdtdt+

∫ ∞
0

δe−δs
∫ ∞
s

e−(r+ν)tkεdtds

=

∫ ∞
0

e−(r+ν)tε

∫ ∞
t

δe−δsdsdt+

∫ ∞
0

e−(r+ν)tkε

∫ t

0
δe−δsdsdt

=

∫ ∞
0

e−(r+ν+δ)tεdt+

∫ ∞
0

e−(r+ν)tkε(1− e−δt)dt

=
1

r + ν + δ
ε+

1

r + ν
kε− 1

r + ν + δ
kε

=
r + ν + δk

(r + ν + δ)(r + ν)
ε.

Therefore, the lower bound L at time 0 in (55) derives from the multiplication of the present value

stated above by exogenously given ω ∈ [0, 1) that represents the extent to which credit is tightened.

6 Further Numerical Results

Effects of Credit Tightening. Credit tightening affects the optimal consumption (Table 1) and in-

vestment (Table 2) strategies. Tightening of credit by decreasing ω makes individuals reduce their

consumption amount; this response is especially significant for poor people, so their consumption

smoothing is more difficult than for wealthy people. The effects of the LNIS worsens the situation

for poor people. Given the significant downward jump in income in the aftermath of the LNIS, the

poor people who are credit tightened would have difficulty to secure extra savings to finance their

consumption needs. Hence, the consumption amount could fall further with the joint effects caused
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δ = 0 δ = 0.07 δ = 0.08
w \ ω 0% 5% 10% 20% 0% 5% 10% 20% 0% 5% 10% 20%

1 1.0922 1.2090 1.2966 1.4336 0.7261 0.7200 0.7232 0.7281 0.7077 0.7033 0.7060 0.7098
10 1.8159 1.8646 1.9104 1.9948 1.1919 1.1809 1.1808 1.1810 1.1691 1.1578 1.1575 1.1586
20 2.4041 2.4402 2.4750 2.5409 1.6679 1.6538 1.6538 1.6539 1.6406 1.6285 1.6285 1.6285
30 2.9396 2.9698 2.9991 3.0552 2.1348 2.1183 2.1185 2.1185 2.1040 2.0915 2.0918 2.0910
40 3.4507 3.4772 3.5031 3.5528 2.5966 2.5787 2.5789 2.5789 2.5636 2.5507 2.5510 2.5501
50 3.9476 3.9715 3.9949 4.0400 3.0552 3.0365 3.0368 3.0368 3.0210 3.0075 3.0078 3.0069

δ = 0.09 δ = 0.10
w \ ω 0% 5% 10% 20% 0% 5% 10% 20%

1 0.6862 0.6887 0.6909 0.6945 0.6748 0.6815 0.6784 0.6814
10 1.1396 1.1397 1.1397 1.1398 1.1223 1.1094 1.1233 1.1237
20 1.6071 1.6071 1.6072 1.6071 1.5894 1.5913 1.5890 1.5888
30 2.0680 2.0681 2.0681 2.0681 2.0498 2.0618 2.0489 2.0486
40 2.5260 2.5260 2.5260 2.5260 2.5069 2.5208 2.5059 2.5057
50 2.9820 2.9821 2.9821 2.9821 2.9620 2.9738 2.9613 2.9611

Table 1: Optimal consumption amount for various credit tightening scenarios and intensity val-
ues of the large, negative shock. Parameter values: r = 0.02 (risk-free rate), β = 0.04 (subjective
discount rate), µ = 0.06 (expected stock return), σ = 0.20 (stock volatility), γ = 2 (risk aversion),
ε = 1 (income), ν = 0.02 (mortality rate), and k = 0.2 (recovery rate).

by the credit tightening and the income shock. Those effects also reduce the risky investment amount;

this result is similar to the observation in the optimal consumption amount.

Figure 1: Hedging demand. Parameter values: r = 0.02 (risk-free rate), β = 0.04 (subjective
discount rate), µ = 0.06 (expected stock return), σ = 0.20 (stock volatility), γ = 2 (risk aversion),
ε = 1 (income), ν = 0.02 (mortality rate), and k = 0.2 (recovery rate).

Hedging Demand. The amount of hedging demands differs between δ = 0 and δ > 0, and the differ-
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δ = 0 δ = 0.07 δ = 0.08
w \ ω 0% 5% 10% 20% 0% 5% 10% 20% 0% 5% 10% 20%

1 4.0426 6.1272 7.6885 10.1335 5.2955 5.6019 5.8596 6.2650 5.3110 5.5845 5.8131 6.1575
10 14.2285 15.0976 15.9148 17.4194 12.3362 12.2797 12.8383 12.2981 12.2003 12.1282 12.1269 12.1598
20 21.6927 22.3378 22.9587 24.1342 17.7237 17.6876 17.6797 17.6806 17.5918 17.4760 17.4635 17.5022
30 28.2186 28.7577 29.2809 30.2818 23.0102 22.9245 22.9209 22.9207 22.8117 22.6988 22.6947 22.7050
40 34.3084 34.7818 35.2955 36.1304 28.2267 28.0941 28.0950 28.0951 27.9683 27.8593 27.8622 27.8523
50 40.1449 40.5720 40.9892 41.7945 33.3908 33.2257 33.2293 33.2298 33.0902 32.9808 32.9875 32.9675

δ = 0.09 δ = 0.10
w \ ω 0% 5% 10% 20% 0% 5% 10% 20%

1 5.3298 5.5553 5.7509 6.0713 5.3526 5.7242 5.7158 5.9980
10 12.0225 12.0263 12.0312 12.0399 11.8807 11.6225 11.9189 11.9382
20 17.3480 17.3468 17.3471 17.3471 17.1623 16.6403 17.2001 17.2086
30 22.5196 22.5197 22.5197 22.5194 22.3573 22.2349 22.3573 22.3544
40 27.6439 27.6450 27.6452 27.6454 27.4934 27.6851 27.4720 27.4644
50 32.7435 32.7451 32.7453 32.7456 32.5915 32.9486 32.5630 32.5543

Table 2: Optimal investment amount for various credit tightening scenarios and intensity values
of the large, negative shock. Parameter values: r = 0.02 (risk-free rate), β = 0.04 (subjective
discount rate), µ = 0.06 (expected stock return), σ = 0.20 (stock volatility), γ = 2 (risk aversion),
ε = 1 (income), ν = 0.02 (mortality rate), and k = 0.2 (recovery rate).

ence increases as wealth w increases (Figure 1). This result implies that even sufficiently large wealth

does not appropriately absorb the negative effects of the LNIS, and thereby amplifies the negative ef-

fects of background risk on risky investment compared to the positive effects of risk diversification.1

To obtain empirically plausible implications on investment, we carefully choose the parameter

values for mortality rate and aggregate earnings by using the Survey of Consumer Finances (SCF)

data. We adjust the values of mortality rate, ν, according to age of head given in the SCF. We assume

that people die on average at the age of 80. For the age group of 35 − 44, for instance, we vary ν

from 0.0222 to 0.0278 at intervals of 0.0014. In this case, we have five values of ν. When matching

up the stock investment with the SCF data, we take the median proportion of total wealth invested

in stocks from age 35 through 44 (i.e., ν ∈ [0.0222, 0.0278]) as the optimal investment proportion.

When computing the optimal proportion of total wealth invested in stocks, we calibrate an initial

endowment of financial wealth, w, and a constant stream of labor income per annum, ε = ξI , through

the normalized cash-on-hand, i.e., the net worth normalized by income from the SCF.

The LNIS reduces the optimal portion of total wealth that should be invested in stocks (Table

3). The optimal investment strategy reported in the table differs from the wealth- and age- indepen-

dent constant Merton (1969, 1971) investment rule. Our optimal investment strategy suggests that as

people get older, their risky investment should be geared toward relatively safe assets; this advice is

consistent with the rules of thumb proposed by financial advisers. The optimal risky portion itself
1There are two opposing motives on risky investment: a precautionary savings motive that reduces investment and a

risk diversification motive that rises investment.
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Age
Percentile of Net Worth 35-44 45-54 55-64 65-74 75-80

0-25 6.0 5.7 5.5 1.3 0.5
25-49.9 10.7 10.4 9.7 3.4 2.0
50-74.9 14.8 14.6 14.2 6.2 4.1
75-89.9 17.7 17.6 17.3 9.1 6.7
90-100 20.1 20.0 19.8 12.0 9.4

all 14.8 14.6 14.2 4.1 4.1

Table 3: The optimal proportion of total wealth invested in stocks.Parameter values: r = 0.02
(risk-free rate), β = 0.04 (subjective discount rate), µ = 0.06 (expected stock return), σ = 0.20
(stock volatility), γ = 2 (risk aversion), ε = 1 (income), and k = 0.2 (recovery rate). The values
of mortality rate, ν, are adjusted following age of head given in the SCF, assuming that people die
on average at the age of 80. An initial endowment of financial wealth, w, and a constant stream of
labor income per annum, ε = ξI , are calibrated via the normalized cash-on-hand, i.e., the net worth
normalized by income from the SCF for the period of 1995-2010. Note that the data period is chosen
for including the 2007-2009 Great Recession in the U.S., when many people have experienced the
unprecedented largest reductions in their consumption and unemployment.

is significantly ≤50%, as would be optimal in the Merton investment model. Our model generates

empirically plausible values of 0 to 20% for optimal stock investment.

Interestingly, we show that people’s risky investment ratio rises as their wealth increases, and

this result is consistent with Wachter and Yogo (2010). The decision to invest in stocks is affected

by two counteracting forces: a precautionary savings motive that decreases stock investment, and

a diversification motive that increases stock investment. The presence of the LNIS itself increases

undiversifiable background risk such as income risk, so precaution makes people conservative when

taking on risk in the stock market. Accordingly, precautionary saving occurs. When saving occurs,

the resources available for future investment are increased. Since the prices of risky investments are

adjusted to increase their expected returns, the expected decline in labor income due to the LNIS can

be partially offset. For risk diversification purposes, the share of total resources invested in the stock

market would, thus, increase with an increase in wealth.

Utility Costs. We can measure utility costs of ignoring the LNIS as the wedge of value functions with

and without the income shock. The costs can be thought of as the certainty equivalent wealth that is

the greatest wealth the individual is willing to pay to reduce the probability or effect of the risk of

catastrophic reduction in individual earnings.
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Definition 6.1. Let ∆(w) be the certainty equivalent wealth at initial wealth w, satisfying

V (w −∆(w), I; δ = 0) = V (w, I; δ > 0),

where V (w, I; δ) is the value function given in (3) with the Poisson intensity δ.

Figure 2: Utility costs of ignoring a large, negative income shock. Parameter Values: µ − r = 4%, r = 2%, σ = 20%, γ = 2,

β = 4%, k = 20%, L = 0, ε = ξI = 1, and ν = 0.02.

Ignoring the LNIS can result in substantial utility costs in the form of certainty equivalent wealth

(Figure 2). Obviously, the maximum payment that the individual should be willing to accept to elimi-

nate the possibility of the catastrophic income shock (or reduce its negative effects) increases with the

probability that the shock will occur.
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