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ABSTRACT 

 

This paper suggests stochastic volatility models incorporating both the leverage effect and information 

on the daily high/low prices of stocks. The leverage effect is measured using open-to-close returns and 

two distinct intraday data, ranges, defined by the differences between daily high and low log-prices, 

and extreme prices in order to detect asymmetric volatility behavior. The likelihood-based inferences 

of Markov Chain Monte Carlo (MCMC) are conducted to estimate parameters and volatility. The 

simulation study reveals that the proposed model is superior to a traditional stochastic volatility model 

using returns only but there is little difference between estimators using ranges or high/low prices. 

Performing an empirical analysis using the E-mini S&P 500 and the Nasdaq 100 Futures, we find 

strong evidence of the leverage effect even when information of high/low prices is incorporated. 
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1. Introduction 

Volatility represents the variability of markets, and measuring variability is an important issue in 

finance. Modeling volatility should reflect the empirical characteristics of the variability such as the 

stochastic change of volatilities over time or the correlated movement between stock prices and 

volatilities. Heston (1993) suggests a continuous-time square-root stochastic volatility model, in 

which innovations to volatility are partially correlated with innovations to the price of stock. This 

model has been extended to several other models by two approaches. One approach adds jumps into 

the stock returns or the volatility process (See Bates (2000), Pan (2002), Eraker et al. (2003)). Eraker 

et al. (2003) find strong evidence for jumps in volatility as well as jumps in returns. Another approach 

supplements the Heston model by extending the number of factors in the model. Using a two-factor 

stochastic volatility model and time-varying weights of the factors, Christoffersen et al. (2009) enable 

modeling more flexible volatility structure. Unlike the affine extensions, Jacquier et al. (2004) and Yu 

(2005) propose non-affine lognormal autoregressive conditional volatility models which are not easy 

for being applied to option pricing but are adept at empirically fitting underlying stocks. Chernov et al. 

(2003) test affine stochastic volatility and logarithmic models. They show the necessity of extended 

models such as affine stochastic volatility models with jumps and a two-factor logarithmic model.  

Including the aforementioned models, most models assume prices evolve in continuous time. Yet 

an empirical test is conducted using daily or weekly close-to-close prices. For instance, suppose a 

stock shows large movement during trading hours but the closing price is at a similar level of the 

previous day’s closing price. Using only the close-to-close returns may not accurately measure the 

variability of the asset prices in continuous-time framework. To consider such sharp intraday rises or 

falls of prices into a model, Gallant et al. (1999) use close-to-close returns along with the range 

(calculated as the difference between the daily high and low log-prices). Alizadeh et al. (2002) also 

show range-based volatility proxies are more efficient than estimated volatility based on absolute 

daily returns and robust to market microstructure noise. Though high-frequency data are also available 

these days to explain prices’ intraday movement, using high/low data has a couple of advantages. As 

Brandt and Diebold (2006) have pointed out, daily open, close, high and low prices (H/L prices 

hereafter) are not only widely available with lengthy time-series, but yield empirical results that are 

fairly robust independent of market microstructure noise such as bid-ask bounce and asynchronous 

trading. Horst et al. (2012) also recently suggest a stochastic volatility model including full opening, 

closing and H/L prices and demonstrate that the use of full information can improve estimation.  

Until now, all models using H/L prices assume, to the best of our knowledge, independent 

innovations between stock returns and changes of its volatility, i.e., no correlation, perhaps due to the 
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joint likelihood of H/L prices and close prices revealed hardly when prices and volatilities are 

correlated. However, a negative correlation is not only empirically observed in stock markets but 

theoretically meaningful since the negative correlation is well known as the leverage effect in finance. 

According to Black (1976), when stock prices decrease, the company’s debt to equity ratio becomes 

high and then investors will consider the company to be at higher risk of default leading eventually to 

increases in the stock’s volatility. This leverage effect is a stylized fact observed in stock markets.  

Without considering H/L prices, some studies suggest stochastic log-volatility models with the 

leverage effect. Allowing an inter-temporal dependence between disturbances of the processes to their 

basic stochastic volatility model with independent innovations (Jacquier et al. (1994)), Jacquier et al. 

(2004) estimate the model using the likelihood-based estimation method called Markov Chain Monte 

Carlo (MCMC). Yu (2005) compares the Jacquier et al. (2004) model with another discretized 

stochastic volatility model with contemporaneous dependence between disturbances of the processes. 

Yu (2005) asserts that his model can reflect the leverage effect better than Jacquier et al.’s (2004). 

There are also multi-factor stochastic volatility models with leverage effect such as Durham (2006). 

In this context, this paper suggests a stochastic volatility model allowing correlation between 

returns and volatility processes but we use the additional information on H/L prices of assets. Our 

model is closely related to models of Alizadeh et al. (2002), Brandt and Jones (2005) and Horst et al. 

(2012) but is extended to include the leverage effect. It is the first try to deal with stochastic volatility 

models with leverage effect in the framework using extreme values. To reflect the information on 

extreme values, we apply the likelihood-based MCMC estimation method. The idea is an approximate 

decomposition of the entire likelihood into two parts applying the Bayes rule. The first part is the joint 

likelihood of closing, high, and low returns. The second is the joint likelihood of daily returns and 

volatilities.  

We suggest two estimators to incorporate H/L prices to our model. The first one uses returns and 

ranges, and the other does opening, high, low and closing prices separately. To verify the performance, 

we compare our suggested methods with a return-based basic stochastic volatility model with 

correlation and H/L prices-based models without correlation. We conduct both simulation study and 

empirical analysis using the E-mini S&P 500 and the Nasdaq 100 Futures.  

Through simulation study, first, the parameters estimated by our model are closer to the true 

parameters than those from the return-based basic model with correlation. Second, the difference 

between two models is shown by the root mean squared errors (RMSEs) of the estimated volatilities. 

RMSEs of the basic stochastic volatility model increase 1.54 – 1.76 times of those of our model on 
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average. Thirds, in the comparison with H/L prices-based model without correlation, it is interesting 

to see that the parameters estimated show minor difference even though there exists a significant 

correlation. However,  the existence of correlation makes a major difference in volatility estimation. 

When the correlation is absolutely larger than -0.4, the RMSEs of our model are 4-10% smaller than 

those of the previous models such as Brandt and Jones (2005) and Horst et al. (2012) and the 

difference is statistically significant. 

In empirical analysis with market data, we find negative correlation of around -0.3  - -0.7 

between returns and changes of volatility for both the E-mini S&P 500 and the Nasdaq 100 futures. 

The existence of strong leverage effect suggests that the correlation must be incorporated in the model 

when high and low prices are considered. We also confirm that there is asymmetric information of 

H/L prices but the effect is meager. 

The rest of this paper is organized as follows. In Section 2, we introduce the stochastic volatility 

models and explain how the information on H/L prices is incorporated into the model. In Section 3 we 

present the estimation method. In Section 4 and 5, the estimation results are given. First, in Section 4, 

we demonstrate our models through simulation as evidence. Next, in Section 5, we estimate the 

parameters of the stochastic volatility models from actual market data. Finally, Section 6 summarizes 

the contents of this paper and suggests directions for further research. 

 

2. Stochastic Volatility Models 

2.1. The basic model 

Among the various stochastic volatility models in continuous-time economy, affine or log-

volatility models are widely used. While people prefer affine models to log-volatility models from the 

perspective of pricing options, log-volatility models are often used for examining statistical behavior 

of an underlying asset. We also choose a log-volatility process in a continuous time economy. Let Y𝑡 

be the logarithm of an asset’s price 𝑆𝑡 and 𝜎𝑡 be volatility of the log-return at time 𝑡. We assume 

that the log-returns of stock prices evolve below:  

 

𝑑𝑌𝑡 = 𝜇𝑑𝑡 + 𝜎𝑡𝑑𝑊𝑡
1 

𝑑 ln 𝜎𝑡 = 𝜅(𝜃 − ln 𝜎𝑡)𝑑𝑡 + 𝜐𝑑𝑊𝑡
2 

(1) 

 

where 𝑊𝑡
1 and 𝑊𝑡

2 are Wiener processes correlated with < 𝑑𝑊𝑡
1, 𝑑𝑊𝑡

2 >= 𝜌𝑑𝑡 for a constant 𝜌 

and 𝜇 is the instantaneous expected rate of the log return. If 𝜌 = 0, it coincides with the models 

proposed by Alizadeh et al. (2002) and Horst et al. (2012). The log-volatility process of equation (1) is 
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assumed that it follows a mean-reverting Ornstein–Uhlenbeck process. The parameter 𝜅 is a mean-

reverting factor, 𝜃 is a long-term mean of the log-volatility, and 𝜐 is the volatility of stock returns’ 

volatility.  

For empirical practice, following Yu (2005), we assume a basic stochastic volatility model 

discretized as follows: For 𝑡 = 1,2, ⋯ , 𝑇, trading days 

 

𝑦𝑡 = 𝜎𝑡−1𝜀𝑡
𝑦

  

ln 𝜎𝑡 = 𝛼 + 𝛿 ln 𝜎𝑡−1 + 𝜐𝜀𝑡
𝜎 

(2) 

 

where 𝜀𝑡
𝑦

 and 𝜀𝑡
𝜎 have a bivariate standard normal distribution with the correlation 𝜌. Here 𝑦𝑡 

becomes a daily log return and 𝛼 equals 𝜅𝜃, and 𝛿 corresponds to 1 − 𝜅 which represents the 

autocorrelation of log volatilities. If 𝛿 is positively large, autocorrelation is strong so that the 

persistency of volatility is also high. We name this discretized model as SV. It is worthy to note that 

the return at 𝑡 is conditioned on the volatility estimated at the previous day 𝑡 − 1. We neglect the 

drift term in equation (2) because short-term data like daily prices are used, so that we focus on 

parameters of volatility and volatility itself. Horst et al. (2012) also support a driftless model given by 

equation (2) by estimating the drift of weekly log-prices near 0.  

  

2.2. The model incorporating ranges and H/L prices  

Daily opening, high, low and closing prices are publically known data. They are easily obtained 

via internet data providers without any cost. On October 17, 2008 S&P 500 index started with 942.29 

and ended up with 940.55, so the daily percentage change was no more than 0.2%. However the H/L 

prices were 984.64 and 918.74 respectively, so that the range was almost 7%. It may be interesting to 

see how extreme prices such as high and low prices influence the parameters in equation (1). In order 

to incorporate intraday data into the model, the continuous model in equation (1) cannot be discretized 

such as equation (2). Instead we keep a continuous framework as follows: Under the same notation as 

in equation (2) and for 𝑡 = 1,2, ⋯ , 𝑇, trading days, 

 

𝑦𝑠 = 𝜎𝑡𝜀𝑠
𝑦

, for 𝑡 − 1 < 𝑠 ≤ 𝑡, 

ln 𝜎𝑡 = 𝛼 + 𝛿 ln 𝜎𝑡−1 + 𝜐𝜀𝑡
𝜎 . 

(3) 

 

Note that unlike the basic model, returns continuously move with constant conditional volatility 
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𝜎𝑡 over intraday (𝑡 − 1, 𝑡] but volatility is approximately discretized. Since volatility is constant 

during a day, the correlation measuring leverage effect is not taken into account over intraday but it is 

considered over inter-day via the correlation 𝜌 at day 𝑡 where the two innovations 𝜀𝑡
𝑦

 and 𝜀𝑡
𝜎 

follow a bivariate standard normal. Two discretized models in equation (2) and equation (3) are 

slightly different in the conditional volatility affecting the return. Yu (2005) argues that the 

contemporaneous dependence between the two disturbances of equation (2) makes 𝑦𝑡 a martingale 

difference whereas 𝑦𝑡 in equation (3) is not.
1
. Thus the model of equation (3) is not consistent in the 

efficient market hypothesis. The reason that we mix discretization of volatility with continuous 

movement of returns is to incorporate both information on extreme values and the leverage effect 

simultaneously. This will be explained in more detail in the next section.  

 

3. Estimation Methodology 

In this section we embody the model given by equation (3) with intraday data through two 

different rules. In the first rule, we exploit ranges to supplement daily returns, precisely open-to-close 

returns. Since range is defined by the value of subtraction of the lowest log-price from the highest log-

price, it does not distinguish each level of the extreme values. The model of equation (3) with the 

estimator incorporating returns and ranges is denoted by RR (open-to-close returns and ranges). This 

RR estimator is the correlated proxy corresponding to the model of Alizadeh et al. (2002) which uses 

ranges only. Another rule is to reflect levels of extreme prices separately. The RHL (open-to-close 

returns, open-to-high and open-to-low returns) is named by the estimator which is the correlated 

counterpart corresponding to the CHLO model of Horst et al. (2012) which demonstrate information 

on levels of extreme values improves the estimation of volatility, although the difference is small. We 

test whether the same phenomena is observed in a correlated case. Within the frame of information, 

using separate returns rather than ranges seems more useful but has its pros and cons. Ranges only use 

high and low prices which occur mainly during consecutive trades, so these prices may be considered 

as the values from a theoretical continuous-time series. On the contrary, the RHL exploits both the 

H/L and opening prices but opening prices may be easily influenced by market microstructure due to 

 

1
 Instead of the log-volatility process, Yu (2005) assumes the log-variance process. In the process, the 

conditional volatility of a return is just a square root of updated variance, so the difference of the two processes 

is little.  
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trading mechanisms of stock markets.
2
  

 

3.1 The RHL estimator 

We first explain the RHL estimator. To exploit information on the high and low prices during 

trading hours, we define a daily return 𝑦𝑡 as log 𝑆𝑡 − log 𝑆𝑡−1. Similarly, we define the maximum 

and the minimum returns as 𝐻𝑡 = max𝑡−1<𝑠≤𝑡 𝑦𝑠 and 𝐿𝑡 = min𝑡−1<𝑠≤𝑡 𝑦𝑠, respectively. The joint 

density of the maximum, the minimum conditioned on the return and the volatility can all be derived 

from the results of Feller (1951), Freedman (1971), and Klebaner (2005). Since the return 𝑦𝑡 is a 

driftless Brownian Motion with a constant volatility 𝜎𝑡 over the interval (𝑡 − 1, 𝑡], the joint density 

of 𝐻𝑡 and 𝐿𝑡 is 

𝑝(𝐻𝑡 ∈ 𝑑𝑏,  𝐿𝑡 ∈ 𝑑𝑎| 𝑦𝑡 = 𝑦, 𝜎𝑡)                                                                                    

=
1

𝜎𝑡
2

1

𝜙 (
𝑦
𝜎𝑡

)
∑ [4𝑛2 (

(2𝑛(𝑏 − 𝑎) − 𝑦)2

𝜎𝑡
2 − 1) 𝜙 (

2𝑛(𝑏 − 𝑎) − 𝑦

𝜎𝑡
)

∞

𝑛=−∞

 

                        −4𝑛(𝑛 − 1) (
(2𝑛(𝑏 − 𝑎) + 𝑦 − 2𝑏)2

𝜎𝑡
2 − 1) 𝜙 (

2𝑛(𝑏 − 𝑎) + 𝑦 − 2𝑏

𝜎𝑡
)] 

(4) 

 

where 𝜙(𝑧) =
1

√2𝜋
𝑒−

𝑧2

2 . The joint density of equation (4) involves a calculation of an infinite sum but 

the sum quickly converges to a small number (see Choi and Roh (2013)).  

In order to incorporate extreme prices with returns that are correlated with volatilities, we 

decompose the likelihood of return data into two terms using Bayes rule: 

 

𝑃(𝑦, 𝐻, 𝐿|Θ, 𝜎) = 𝑃(𝐻, 𝐿|𝑦, Θ, 𝜎)𝑃(𝑦|Θ, 𝜎) 

                                        ≈ 𝑃(𝐻, 𝐿|y, Θ, 𝜎, (−𝜌))𝑃(𝑦|Θ, 𝜎) 
(5) 

 

where 𝑦, 𝐻 and 𝐿 are vectors of time series data of open-to-close, open-to-high and open-to-low 

returns. Θ represents a vector of model parameters {𝛼, 𝛿, 𝜐} and 𝜎 is a vector of a time series of 

 

2
 Amihud and Mendelson (1987) show that open-to-open returns exhibit greater dispersion and non-normality 

by the trading mechanism. There are studies that opening or closing prices do not represent appropriate stock 

values but are affected by market structures (e.g., Harris (1989), Stoll and Whaley (1990)), and those prices may 

be noisy. 
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volatility. The first term, 𝑃(𝐻, 𝐿|𝑦, Θ, 𝜎), is the joint density of high and low returns conditioned on 

returns, volatility and parameters of the stochastic volatility model. Due to this term, information on 

the high and low prices can be incorporated when the model parameters are estimated. The second 

term, 𝑃(𝑦|Θ, 𝜎), is the likelihood of open-to-close returns given volatility and parameters. In equation 

(3), the model assumes the daily correlation between the return process and the volatility process, so 

the leverage effect can be measured from the second term as in the case of general stochastic volatility 

models. The distribution, 𝑃(𝑦|Θ, 𝜎), can be calculated exactly from return data, but in this model we 

approximate 𝑃(𝐻, 𝐿|𝑦, Θ, 𝜎) to 𝑃(𝐻, 𝐿|𝑦, Θ, 𝜎, (−𝜌)). As in the distribution of equation (4), the joint 

density is conditioned on constant volatility, and correlation is not considered in the distribution of 

extreme values. Thus, the symbol ( )  means that there is no correlation. If innovations are 

uncorrelated, equation (5) holds exactly.  

Since we measure the leverage effect only from the 𝑃(𝑦|Θ, 𝜎) term, correlation may be 

underestimated. Nonetheless we may argue that the inter-temporal dependence between the return 

process and the volatility process in equation (3) gauges the leverage effect appropriately. Suppose 

volatility increases from 𝜎𝑡−1 to 𝜎𝑡, i.e., 𝜎𝑡−1 < 𝜎𝑡. Then the return 𝑦𝑡 is more likely to decrease 

but the increase in 𝜎𝑡 can cause a large gap between the maximum and the minimum returns, which 

means that returns and ranges are negatively correlated. For the case of the contmeporaneous 

dependence like equation (2), the gap 𝐻𝑡 − 𝐿𝑡 tends to have a small value because the likelihood of 

returns and extreme returns are affected by the lower value of 𝜎𝑡−1 instead of 𝜎𝑡. The gap, which is 

defined as a range, can be considered as a type of variability measure, so that the negative correlation 

between returns and changes of ranges represents a type of leverage effect and can be measured from 

equation (3).
3
 

 

3.2 The RR estimator 

Instead of using the level of extreme values we use ranges, differences of maximum and 

minimum returns such as 𝐻𝑡 − 𝐿𝑡 to exploit the symmetric information of high and low price levels. 

Our RR estimator is in a line with Brandt and Jones (2005) in reflecting both returns and ranges in the 

frame of stochastic volatility models, but differ by taking into consideration the correlation that can 

measure the leverage effect. By a change of variables, the density of range conditioned on constant 

 

3
 We tested the contemporaneous dependence model, but leverage effect was considerably underestimated when 

high and low prices are used.  
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volatility and an absolute value of return can be derived from equation (4):  

 

𝑝((𝐻𝑡 − 𝐿𝑡) ∈ 𝑑𝑅 |𝜎𝑡, |𝑦𝑡| = |𝑦|) 

=
1

𝜎𝑡
2𝜙 (

|𝑦|
𝜎𝑡

)
∑ [4𝑛2 (

(2𝑛𝑅 − |𝑦|)2

𝜎𝑡
2 − 1) 𝜙 (

2𝑛𝑅 − |𝑦|

𝜎𝑡
) (𝑅 − |𝑦|)

∞

𝑛=−∞

 

−2𝑛(𝑛 − 1)(2(𝑛 − 1)𝑅 + |𝑦|)𝜙 (
2(𝑛 − 1)𝑅 + |𝑦|

𝜎𝑡
) 

+2𝑛(𝑛 − 1)(2𝑛𝑅 − |𝑦|)𝜙 (
2𝑛𝑅 − |𝑦|

𝜎𝑡
)]. 

(6) 

 

Again we use Bayes rule to incorporate both range information and leverage effect 

 

𝑃(𝑦, 𝑅|Θ, 𝜎) = 𝑃(𝑅|𝑦, Θ, 𝜎)𝑃(𝑦|Θ, 𝜎)   

                        ≈ 𝑃(𝑅|𝑦, Θ, 𝜎, (−𝜌))𝑃(𝑦|Θ, 𝜎) 
(7) 

 

where 𝑅 is a vector of a time series of ranges and other notations are the same with those of equation 

(5). From the first term, 𝑃(𝑅|𝑦, Θ, 𝜎), we can exploit the information on ranges by using the density 

in equation (6). Correlation can be taken into account from the second term, 𝑃(𝑦|Θ, 𝜎). Like the case 

of using price levels, the likelihood 𝑃(𝑅|𝑦, Θ, 𝜎) is approximated to 𝑃(𝑅|𝑦, Θ, 𝜎, (−𝜌)) because 

piecewise constant volatility is assumed.  

 

3.3 MCMC Method 

The Markov Chain Monte Carlo (MCMC) method is an exact likelihood based inference and 

highly efficient making it widely used to estimate model parameters and unobservable variables such 

as volatility (see Eraker et al. (2003), Eraker (2004)). In addition to estimating latent variables, 

MCMC provides estimation risk and is a useful tool for estimation under complex distribution. 

Jacquier et al. (1994) insist MCMC outperforms GMM and QMLE in the estimation of stochastic 

volatility models. Johannes and Polson (2002) also document an overview of MCMC methodology in 

a continuous-time framework.  

The MCMC draws samples from each conditional posterior distribution which is factored into 

likelihood and prior by the Bayes rule. In the case of the stochastic volatility model without 
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considering extreme values, the likelihood of 𝑃(𝑦|Θ, 𝜎) is well known, so that sampling is routine. 

This is not true for the RR and RHL estimators, specifically when the return and volatility are 

correlated. Bayes rule makes the posteriors factored below: 

 

𝑅𝐻𝐿: 𝑃(Θ𝑖|Θ(−𝑖), 𝑦, 𝐻, 𝐿, 𝜎) ∝ 𝑃(𝑦, 𝐻, 𝐿|Θ, 𝜎)𝑃(𝜎|Θ)𝑃(Θ𝑖)  

𝑅𝑅: 𝑃(Θ𝑖|Θ(−𝑖), 𝑦, 𝑅, 𝜎) ∝ 𝑃(𝑦, 𝑅|Θ, 𝜎)𝑃(𝜎|Θ)𝑃(Θ𝑖) 
(8) 

 

where Θ𝑖 represents each parameter of the volatility process and Θ(−𝑖) indicates the parameter set 

except the parameter Θ𝑖. The likelihoods, 𝑃(𝑦, 𝐻, 𝐿|Θ, 𝜎) and 𝑃(𝑦, 𝑅|Θ, 𝜎), are calculated from the 

approximated likelihoods of equation (5) and equation (7).  

In the aspect of estimation, using the approximated likelihoods is advantageous. Note that the 

joint densities given in equation (4) and equation (6) are not dependent on any parameters except for 

volatility. Therefore the Gibbs sampler can be used for sampling the parameters 𝛼, 𝜅, and 𝜐. That is, 

these parameters are sampled directly from known distributions whose conjugate priors are given by 

 

(𝛼, 𝜅)~𝐵𝑉𝑁 (0, (
1 0
0 1

)) and 𝜐2~𝐼𝐺(2.5,0.1) 

 

where 𝐵𝑉𝑁 and 𝐼𝐺 refer to a bivariate normal and an inverse gamma distribution, respectively. In 

order to sample the parameter 𝜌, indicating the leverage effect, we use an independent Metropolis-

Hastings algorithm. The proposal density we use in the Metropolis-Hastings algorithm is 𝑈(−1,1)  

where 𝑈 represents a uniform distribution.  

As for volatility estimation, it is well-known that the conditional posterior of volatility is not 

recognizable, so the Gibbs sampler is no longer applicable. In its place, a random walk Metropolis-

Hastings algorithm is commonly used. We sample volatilities using the same algorithm for the RR and 

RHL estimators. The conditional posteriors are calculated as follows 
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𝑅𝐻𝐿: 𝑃(𝜎𝑡|Θ, 𝜎𝑡−1, 𝜎𝑡+1, 𝑦𝑡 , 𝐻𝑡 , 𝐿𝑡, 𝑦𝑡+1, 𝐻𝑡+1, 𝐿𝑡+1)

∝ 𝑃(𝑦𝑡+1, 𝐻𝑡+1, 𝐿𝑡+1|Θ, 𝜎𝑡, 𝜎𝑡+1)𝑃(𝑦𝑡 , 𝐻𝑡, 𝐿𝑡|Θ, 𝜎𝑡, 𝜎𝑡−1)

× 𝑃(𝜎𝑡+1|Θ, 𝜎𝑡)𝑃(𝜎𝑡|Θ, 𝜎𝑡−1)  

𝑅𝑅: 𝑃(𝜎𝑡|Θ, 𝜎𝑡−1, 𝜎𝑡+1, 𝑦𝑡 , 𝑅𝑡 , 𝑦𝑡+1, 𝑅𝑡+1)  

∝ 𝑃(𝑦𝑡+1, 𝑅𝑡+1|Θ, 𝜎𝑡, 𝜎𝑡+1)𝑃(𝑦𝑡 , 𝑅𝑡|Θ, 𝜎𝑡, 𝜎𝑡−1)

× 𝑃(𝜎𝑡+1|Θ, 𝜎𝑡)𝑃(𝜎𝑡|Θ, 𝜎𝑡−1). 

(9) 

 

In the MCMC algorithm, the sampling of parameters and volatility is iterated from the equation 

(8) and equation (9). Before the Markov chain converges, initial sampling values are discarded. We 

use the first 10,000 samplings as a burn-in period and 90,000 samplings for estimation after the burn-

in period. Through trace plots, we check the convergence of the algorithm in the next simulation and 

empirical analysis sections. 

 

4. Simulation Analysis 

The RR and the RHL are the first estimators considering both the leverage effect and information 

on extreme prices. Through the simulation, we examine performance on two aspects. In one aspect, 

we see how close the estimated parameters are to the realized parameters. Another aspect is to contrast 

the RMSEs between volatilities estimated and volatilities calculated from simulation. We compare the 

RR and the RHL with the basic SV model and existing estimators, the RR(−𝜌) and the RHL(−𝜌) 

which are the counter parts with no correlation to the RR and the RHL, respectively. In other words, 

the RR(−𝜌)  and the (RHL(−𝜌))  are the same estimators as the RR (RHL) except for the 

imposition of zero correlation. 

First we test the case that each simulation path has 500 lengths which mean 500 trading days. 

Next we extend the total number of trading days to 1,000 days. For both cases, we generate 500 paths. 

Each trading day consists of 1,000 sub-periods to produce intraday returns whose maximum and 

minimum returns correspond to the high and the low returns, respectively. In order to compare against 

the results of Brandt and Jones (2005), we use the same parameter values and test three levels of 

persistency of volatility: low, medium, and high. The persistency is determined by the parameter 𝛿 

which is the autocorrelation coefficient of the volatility process. Because the leverage effect is taken 

into account in this paper, we also test three cases of correlation, -0.2, -0.4 and -0.6. Since this paper 

focuses on the leverage effect, we do not test cases of positive correlation.  

Table 1 provides interesting features of estimation results for the case with the simulation length 
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T=500. The mean of estimates are reported and the values in parentheses are the root mean square 

errors (RMSEs). Regardless of correlations and persistency, the parameters of the volatility process, 

𝛼, 𝛿, and 𝜐, are better estimated in estimators relating intraday data than in the SV model both in 

terms of the means and the RMSEs. Specifically, the parameters measuring persistency and variation 

of volatility are much more improved. This result is because additional information on H/L prices can 

lead to more accurate inference of the volatility dynamics. One special feature of Table 1 is that the 

SV model overestimates the volatility of volatility parameter 𝜐 considerably and the extent of 

overestimation also severely grows as persistency increases. Brandt and Jones (2005) argue a highly 

persistent volatility process generates less volatile daily volatility, which can impede the inference of 

the volatility of volatility parameter 𝜐. As for the estimate of 𝛼, High/low prices alter the parameter 

significantly, but 𝛼 just adjusts average of long-term volatility level. The SV, RR, and RHL have 

almost analogous long-term means of volatility when these values are calculated from the estimated 

parameters. The average level of volatility is well measured without H/L prices. This result seems 

natural since the intraday data movement has a small effect on the average value of volatilities. In the 

comparison between the RR and the RHL, it seems there is no difference as we find no evidence that 

there is an asymmetric impact of H/L price levels in the simulation.  Horst et al. (2012) also 

document similar evidence. 

 

******************** INSERT Table 1 HERE ******************** 

 

Panel A to C show the results according to the correlation levels -0.2, -0.4, and -0.6. We confirm 

that the absolute value of estimates of 𝜌 increases in the SV, RR, and RHL as the absolute value of 

the true 𝜌 increases. While all three estimators are able to estimate various magnitudes of the 

leverage effect suitably, the estimates of 𝜌 are slightly underestimated when compared to the true 

values across all the estimators. Although no distinction between the RR and the RHL appear, the 

mean values of estimates of 𝜌 in the SV model are closer to the true values in the low and medium 

persistence cases. This may occur because the simulated paths are not continuous but discrete or due 

to the approximation of joint densities given by equation (5) and equation (7). For high persistence 

cases, regardless of how large the correlation is, the mean values of estimated 𝜌 from the RR and the 

RHL are closer to the true values than those of the SV. In the high persistence case of the SV model, 

since the parameters defining the volatility dynamics are poorly estimated, the estimation of 

correlation is also affected. As for RMSEs of 𝜌, the RR and the RHL outperform the SV model in all 

cases.  
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Panel A to C also show the parameter estimates by the RR(−𝜌) and the RHL(−𝜌) i.e., no 

correlation assumed, whereas samples are generated with correlations -0.2, -0.4, and -0.6. In Panel A, 

since correlation is low, the parameter estimates by the RR(−𝜌) and the RHL(−𝜌) are very close to 

those estimated by the RR and the RHL in low and medium persistence. For high persistence, 

estimates of RR(−𝜌) are not significant while estimates of RHL(−𝜌) are significant. From Panel B 

and C, we find that the parameter estimates are closer to the true value in the RR and the RHL than in 

the RR(−𝜌) and RHL(−𝜌). However, the difference is not large.  

 

******************** INSERT Table 2 HERE ******************** 

 

In Table 2 the results of the estimations are given, where sample paths are extended to 1,000 days. 

The results show similar patterns of the parameter estimation seen in Table 1 but provide better 

estimates in terms of both the means and the RMSEs. However, the degree of improvement is more 

noticeable in the SV model than in other cases. The same phenomenon is observed in Alizadel et al. 

(2002). This can be interpreted as the effect of information. While the RR and the RHL estimators 

exploit the additional information on H/L prices more effectively in a short period, it appears the 

improvements of estimates are not large enough given a longer period.
4
 This is anticipatable in light 

of Parkinson (1980) which shows theoretically that in order to obtain same amount of variance of a 

continuous random walk using daily returns or ranges, the number of observations for returns is 

needed about 2.5 times more than that for similar ranges. In the examination of correlation parameter, 

mean values of SV are a little bit closer to the true values except for the high persistence cases, but the 

RMSEs of the RR and the RHL are mostly smaller than those of SV. 

 

******************** INSERT Table 3 HERE ******************** 

 

In addition to inferring parameters, estimating volatility is also important in stochastic volatility 

models. Table 3 reports ratios of the RMSEs between models. Each simulated volatility series with 

500 lengths is produced from the simulation in Table 1. Using the simulated volatility series and the 

estimated volatility series, RMSEs are calculated from per path. The table shows the means and the 

 

4
 We also tested 2,000 lengths of the sample period. There is not much difference with the results of T=1,000. 

When the sample period increases, the benefit of using high and low prices still appears.  
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values at the 5% and 95% percentiles (values in parenthesis). “SV/RR” denotes the value of the 

RMSE from SV over that from RR. Other symbols have similar meaning. The closer to 1 the ratio, the 

more similar the models are in sense of volatility estimates. We find the ratios SV/RR and SV/RHL 

moderately increase as persistency increases but the RR/RHL is almost identical. It is worthy to note 

RMSEs of SV are at least 1.5 times larger than those of RR or RHL, which implies that volatilities are 

estimated more accurately when intraday data are added rather than when only returns are used. Since 

the SV model shows poor results in the case of high persistence, this also affects volatility estimates. 

Within the same persistence level, the ratios remain stable across correlations. These finding suggests 

improvements of using extreme prices in volatility estimates are not heavily dependent upon 

correlation levels but rather persistency. The RR(−𝜌)/RR  reports the comparison of our RR 

estimator with the RR(−𝜌), a proxy used by Alizadeh et al. (2002). When correlation is low such as 

ρ = −0.2, the two estimators are statistically identical with the 95% confidence level. When the 

correlation is larger than -0.4, the RMSEs of RR are 4-10% smaller on average than those of 

 RR(−𝜌) and the difference is statistically significant. As we can see, the similar results hold for RHL 

and RHL(−𝜌).  

Table 4 shows the same result as in Table 3 when the length of paths increases to 1,000 days. 

Unlike enhancement of parameter estimates for the SV model shown in Table2, SV/RR and SV/RHL 

ratios do not improve much. Hence the effect of incorporating H/L prices appears more precious in 

estimation of volatilities than of parameters. 

 

******************** INSERT Table 4 HERE ******************** 

 

5. Empirical Analysis  

Many empirical documents report the leverage effect on index data such as the S&P 500 and the 

Nasdaq 100 even though the sample periods of the indexes are different by paper. In this section, we 

consider those indexes to observe whether there is leverage effect or not when H/L prices are added.  

 

5.1. Data 

In the RR and RHL, the daily high and low prices occur from the opening time to the closing 

time. As Tsiakas (2008) states, the New York Stock Exchange requires price continuity obligation, 

which mandates specialists to maintain the opening price close to the closing price of the previous 

trading day so that the open-to-close returns are calculated as if returns occur in a 24 hour cycle. Due 

to this market microstructure, the expected value of extreme values such as the high and low prices 
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from the S&P 500 are underestimated because the overnight information is not reflected. To avoid this, 

we use the E-mini S&P 500 Futures instead of the S&P 500 index. E-mini futures contracts are traded 

from 5:00 p.m. the previous day to 4:15 p.m. the following day, so that trading occurs for nearly 24 

hours. Although the Nasdaq Stock Market does not have price continuity obligation, the market also 

operates only during the trading hours. Similarly, we use the E-mini Nasdaq 100 Futures instead of 

the Nasdaq 100 index.  

The E-mini S&P 500 and the Nasdaq 100 Futures started trading in September 1997 and June 

1999, respectively. We use the overlapping time series of daily data from June 1999 to June 2007, 

which about 9 years. Data is obtained from Bloomberg and Table 5 summarizes the statistics for open-

to-close, -high, -low returns, and ranges. To compare the E-mini futures with stock indexes, we also 

report basic statistics for the S&P 500 and the Nasdaq 100 indexes for the same period. Most statistics 

seem to be similar between the E-mini futures and the indexes. All moments of ranges for indexes are 

smaller than those of ranges for the E-mini futures. Annualized standard deviations are about 17% for 

both S&P 500 index and E-mini S&P 500 Futures but wild as about 32-33% for E-mini Nasdaq 100 

Futures and Nasdaq 100 indexes. The ranges have a distributional property as in equation (10) below 

if the returns follow a driftless Brownian Motion process with standard deviation 𝜎 over a time 

period 𝜏 as shown by Feller (1951). 

 

𝐸[𝑅(𝜏)] = 2 (
2𝜏𝜎2

𝜋
)

1/2

. (10) 

 

Equation (10) guarantees that the ratio between the expectation of ranges and standard deviation of 

returns over a unit period, 𝐸[𝑅]/𝜎, has a constant value of 1.5958. From Table 5, when this ratio is 

calculated by using the average value of ranges and standard deviation of returns, the S&P 500 and 

the Nasdaq 100 have 1.24 and 1.22, respectively. Both values are smaller than the constant, which 

means the average value of the ranges is relatively small. When the ratio is calculated using the E-

mini S&P 500 and Nasdaq 100 Futures, the values increase to 1.41 and 1.33, respectively. Hence the 

E-mini index futures fis the model better than index itself. Therefore, volatility might be 

underestimated when H/L prices of the indexes are incorporated.
5
  

 

5
 Using S&P 500 and Nasdaq 100, we estimated volatility from the SV, RR, and RHL. Averages of volatility 

from the RR and RHL were lower than that from the SV model. The difference of annual volatility was about 4 

percent in both of the two indexes, which was not a small difference.  
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******************** INSERT Table 5 HERE ******************** 

 

5.2. Estimates from the stochastic volatility models 

Using the E-mini S&P 500 and Nasdaq 100 Futures, we estimate both parameters and volatility 

from the SV, RR, and RHL. The results of parameter estimates are given in Table 6. First, we can 

identify the parameters of correlation 𝜌 are negative in all models, and it confirms that there is 

leverage effect in the indexes. Since parameters change depending on the sample period, it may be 

difficult to compare our models with others in some papers, but a large portion of our sample period is 

overlapped with the period of Horst et al. (2012). Horst et al. (2012) also tested models that 

incorporate high/low prices. One of them uses ranges and open-to-close returns like our RR, and the 

other that correspondence of our RHL uses high/low returns and open-to-close returns. However, they 

do not consider leverage effect of S&P 500, that is to say they assume the independence between 

returns and changes of volatility. If zero correlation is assumed when there is leverage effect, it can 

change volatility estimation. The RR and RHL have negative correlations significantly in both of E-

mini S&P 500 and Nasdaq 100 futures, so leverage effect should be measured in the indexes even 

when H/L prices are incorporated. 

In the estimated parameters of volatility dynamics, the persistence parameters 𝛿 of the RR and 

RHL are lower than those of the SV model. When H/L prices or ranges are used, it lowers the 

persistency of volatility. In the case of 𝜐 which is the variability parameter of the volatility process, 

information on H/L prices increases it. These results are also found in Alizadeh et al. (2002). When 

they use log ranges as volatility proxy in their one-factor stochastic volatility model, the persistence 

parameters decrease sharply and the volatility of volatility parameters increase. Even though they test 

exchange rates, similar patterns occur as in our indexes once range data is used. Since we incorporate 

ranges and returns together, changes of the parameters are not that big.  

Though negative correlations appear from all the three models, the difference in 𝜌 values 

between the SV model and the other two seems to be quite large. We also tested whether a two-factor 

stochastic volatility model may be proper for the empirical data or not. In the two-factor model, just 

volatility process is different like  

 

ln 𝜎𝑡 = ln 𝑝𝑡 + ln 𝑞𝑡   

𝑤ℎ𝑒𝑟𝑒 ln 𝑝𝑡 = α + 𝛿1ln 𝑝𝑡−1 + 𝜐1𝜀𝑡
𝑝

 𝑎𝑛𝑑 ln 𝑞𝑡 = 𝛿2ln 𝑞𝑡−1 + 𝜐2𝜀𝑡
𝑞
. 

(11) 
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To measure leverage effect, 𝜀𝑡
𝑝
 which follows a standard normal distribution is correlated with the 

return innovation 𝜀𝑡
𝑦

. The innovation 𝜀𝑡
𝑞

 also follows a standard normal distribution, but it is 

independent with 𝜀𝑡
𝑦

 and 𝜀𝑡
𝑝

. The estimation result, not reported here, is almost same as the one-

factor models. The correlation difference between the SV model and the other two models still 

appeared. The two-factor model just distributed the parameter values in the one-factor models. 𝛿1, the 

persistence parameter of the correlated process, catches high persistency and 𝛿2 has small values. To 

conclude, when returns and H/L prices or ranges are jointly incorporated, the magnitude of leverage 

effect diminishes in E-mini S&P 500 and Nasdaq 100 Futures.  

 

******************** INSERT Table 6 HERE ******************** 

 

The RR and RHL have almost same parameter estimates like in the simulation analysis, which 

imply that the effect of information on H/L price levels and ranges is not much different in parameter 

estimation. Besides parameters of the models, it is needed to investigate the effect of H/L prices on 

volatility estimates. Comparisons of estimated volatility between the models are shown in Table 7. 

Correlations are high and values of some statistics are also similar, so we know that the SV, RR, and 

RHL models analogously measure the variability of markets to some degree. In terms of the indexes, 

Nasdaq 100 is more volatile than S&P 500, which is already widely known. To future analyze, the 

estimates of volatility are plotted in Figure 1 and Figure 2. Volatility estimates of the RR and RHL 

fluctuate quite differently with those of the SV model by the top and middle panels of the figures. 

There are several times where the difference of estimated volatility is more than 5 percent in both of 

E-mini S&P 500 and Nasdaq 100 futures. It is never small differences, so we see that H/L prices affect 

volatility. The graphs also show that the volatility estimates of the RR and RHL are higher than those 

of the SV model at some peaks. For example, on April 4, 2000, volatility estimates from the RR and 

RHL are higher than those from the SV model over 20 percent. On that day, S&P 500 started at 

1505.98 and ended at 1494.73, but the low price was 1417.22. Since our RR and RHL can reflect that 

crush, the volatility estimates are high on that day.  

 

******************** INSERT Table 7 HERE ******************** 

 

******************** INSERT Figure 1 HERE ******************** 
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******************** INSERT Figure 2 HERE ******************** 

 

The RR and RHL are the first trial that considers both information on H/L prices and leverage 

effect, so we diagnose applying the models to empirical data. Statistics of the return residuals are 

checked in Table 7. Moments indicate that the residuals have a similar distribution to a standard 

normal in all the three. When autocorrelations are examined, serial correlation rarely remains. 

Therefore, a definite evidence of model misspecification does not appear. To further investigate model 

misspecification, distributions of the residuals are given in Figure 3 and Figure 4. The extent of 

nonnormality is less severe in the RR and RHL. In the case of the SV model, several residuals show 

large shocks, and it is also presented in Eraker et al. (2003), where in the case of the stochastic 

volatility model without jumps . As a result, our RR and RHL are not misspecified even reflecting 

extreme prices and leverage effect.  

 

******************** INSERT Table 8 HERE ******************** 

 

******************** INSERT Figure 3 HERE ******************** 

 

******************** INSERT Figure 4 HERE ******************** 

 

Using additional high/low prices would be beneficial in the aspect of augmented information, but 

it could also be advantageous in other facets. There are studies that opening or closing prices do not 

represent stock values but are affected by market structures (e.g., Harris (1989), Stoll and Whaley 

(1990)), and those prices may be noisy. Whereas range is less noisy than returns as volatility measures 

(see Alizadeh et al. (2002)). It is also well known that using range or H/L prices in volatility 

estimation gives efficiencies (e.g., Parkinson (1980), Garman and Klass (1980)). Considering these 

things, utilizing extreme prices might enable more accurate volatility estimation.  

 

6. Conclusions and Future research 

Volatility changes over time, so stochastic volatility models have become widely known in 

academics and practice. It is also well known that volatility increases when market returns fall. Many 

researches model this financial leverage effect with negative correlation between returns and changes 

of volatility. In this context, we have suggested stochastic volatility models with leverage effect and 

incorporated the information on high /low prices. 
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To compare the performance of models, we executed the MCMC simulation study. With changes 

in the correlation, the model using the additional information on ranges or high/low prices gives better 

estimates of the true parameters than that of the basic stochastic volatility model. The same was also 

true when estimating volatility. As the correlation level increased, our proposed model better 

estimated volatility than the proxy models of Alizadeh et al. (2002) and Horst et al. (2012) and it was 

statistically significant. Using the E-mini S&P 500 and Nasdaq 100 Futures, we find strong evidence 

of the leverage effect for both the E-mini S&P 500 and the Nasdaq 100 Futures and confirm that there 

is asymmetric information of H/L prices but the effect is meager.  

Volatility estimation is important especially for option pricing. In this paper, it is the first attempt 

that the stochastic volatility model with leverage effect incorporates ranges or high/low prices. So 

examining the effect on option prices from the model might be interesting works. In respect of 

complementing our models, adding jumps to the return process or volatility process can be tried as 

Eraker et al. (2003) did under the simple stochastic models. Thus, it is needed to attempt linking 

jumps to high/low prices for future research. 
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Table 1 

Parameter Estimation Results of Simulation with T=500 

This table shows the result of parameter estimation of simulated 500 paths. Each path is produced from a discretized stochastic volatility model: 

 

𝑦𝑡 = 𝜎𝑡−1𝜀𝑡
𝑦
 

ln 𝜎𝑡 = 𝛼 + 𝛿 ln 𝜎𝑡−1 + 𝜐𝜀𝑡
𝜎 

 

where 𝜀𝑡
𝑦
 and 𝜀𝑡

𝜎 have a bivariate standard normal distribution with correlation 𝜌. The return and volatility series of each path has 500 lengths, so a 

trading day 𝑡 has a value from 1 to 500. During each time step from 𝑡 − 1 to 𝑡, there are 1,000 sub-periods. We set three different levels of persistence: 

“Low”, “Medium”, and “High”, by changing the values of volatility parameters. We vary the level of correlation: the case of -0.2 (Panel A), -0.4 (Panel B), 

and -0.6 (Panel C). Parameter estimation is conducted through different models. “SV” denotes the basic stochastic volatility model. “RR” denotes the 

stochastic volatility model incorporating ranges. “RHL” denotes the stochastic volatility model incorporating high and low prices. “RR(−𝜌)” (RHL(−𝜌)) 

corresponds to the RR (RHL) with imposition of zero correlation. These values are means of estimates and the values in parenthesis are root mean square 

errors.  

Panel A: Parameter Estimation with ρ=-0.2 

    Low persistence   Medium persistence   High persistence 

    α δ ν ρ   α δ ν ρ   α δ ν ρ 

True 
 

-0.368  0.900  0.182  -0.200  
 

-0.184  0.950  0.130  -0.200  
 

-0.074  0.980  0.083  -0.200  

                
SV  

-0.549  0.851  0.202  -0.165  
 

-0.364  0.902  0.171  -0.145  
 

-0.276  0.928  0.146  -0.125  

 
 (0.274)  (0.074)  (0.033)  (0.138) 

 
 (0.242)  (0.064)  (0.045)  (0.158) 

 
 (0.273)  (0.071)  (0.065)  (0.179) 

                
RR (-ρ)  

-0.393  0.894  0.175  Null 
 

-0.243  0.935  0.138  Null 
 

-0.238  0.936  0.138  Null 

 
 (0.092)  (0.024)  (0.015) Null 

 
 (0.097)  (0.025)  (0.013) Null 

 
 (0.092)  (0.024)  (0.013) Null 

                
RHL (-ρ)  

-0.394  0.894  0.175  Null 
 

-0.244  0.935  0.138  Null 
 

-0.154  0.960  0.106  Null 

 
 (0.093)  (0.024)  (0.015) Null 

 
 (0.098)  (0.025)  (0.013) Null 

 
 (0.105)  (0.027)  (0.024) Null 

                
RR  

-0.390  0.895  0.175  -0.141  
 

-0.242  0.935  0.139  -0.138  
 

-0.152  0.960  0.106  -0.134  

 
 (0.090)  (0.024)  (0.015)  (0.094) 

 
 (0.096)  (0.025)  (0.013)  (0.108) 

 
 (0.104)  (0.027)  (0.024)  (0.122) 

                
RHL  

-0.391  0.895  0.175  -0.140  
 

-0.242  0.935  0.139  -0.137  
 

-0.153  0.960  0.106  -0.133  

   (0.091)  (0.024)  (0.015)  (0.094)    (0.097)  (0.025)  (0.013)  (0.108)    (0.105)  (0.027)  (0.024)  (0.123) 
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Panel B: Parameter Estimation with ρ=-0.4 

    Low persistence   Medium persistence   High persistence 

    α δ ν ρ   α δ ν ρ   α δ ν ρ 

True 
 

-0.368  0.900  0.182  -0.400  
 

-0.184  0.950  0.130  -0.400  
 

-0.074  0.980  0.083  -0.400  

                
SV  

-0.526  0.857  0.201  -0.309  
 

-0.363  0.902  0.172  -0.306  
 

-0.283  0.925  0.147  -0.265  

 
 (0.235)  (0.064)  (0.031)  (0.155) 

 
 (0.241)  (0.065)  (0.046)  (0.169) 

 
 (0.289)  (0.075)  (0.066)  (0.205) 

                
RR (-ρ)  

-0.386  0.896  0.175  Null 
 

-0.238  0.936  0.138  Null 
 

-0.144  0.962  0.105  Null 

 
 (0.089)  (0.024)  (0.014) Null 

 
 (0.092)  (0.024)  (0.013) Null 

 
 (0.094)  (0.024)  (0.023) Null 

                
RHL (-ρ)  

-0.386  0.896  0.176  Null 
 

-0.238  0.936  0.138  Null 
 

-0.153  0.960  0.106  Null 

 
 (0.089)  (0.024)  (0.014) Null 

 
 (0.092)  (0.024)  (0.013) Null 

 
 (0.104)  (0.027)  (0.024) Null 

                
RR  

-0.367  0.900  0.173  -0.286  
 

-0.225  0.939  0.136  -0.294  
 

-0.144  0.962  0.105  -0.286  

 
 (0.079)  (0.021)  (0.015)  (0.135) 

 
 (0.078)  (0.021)  (0.012)  (0.136) 

 
 (0.094)  (0.024)  (0.023)  (0.152) 

                
RHL  

-0.368  0.900  0.173  -0.284  
 

-0.226  0.939  0.136  -0.292  
 

-0.144  0.962  0.106  -0.284  

   (0.079)  (0.021)  (0.015)  (0.136)    (0.078)  (0.021)  (0.012)  (0.137)    (0.094)  (0.024)  (0.024)  (0.154) 

Panel C: Parameter Estimation with ρ=-0.6 

    Low persistence   Medium persistence   High persistence 

    α δ ν ρ   α δ ν ρ   α δ ν ρ 

True 
 

-0.368  0.900  0.182  -0.600  
 

-0.184  0.950  0.130  -0.600  
 

-0.074  0.980  0.083  -0.600  

                
SV  

-0.509  0.862  0.197  -0.477  
 

-0.358  0.904  0.169  -0.458  
 

-0.269  0.929  0.145  -0.394  

 
 (0.209)  (0.057)  (0.026)  (0.168) 

 
 (0.225)  (0.060)  (0.043)  (0.192) 

 
 (0.262)  (0.068)  (0.064)  (0.254) 

                
RR (-ρ)  

-0.382  0.897  0.174  Null 
 

-0.245  0.934  0.138  Null 
 

-0.135  0.964  0.104  Null 

 
 (0.089)  (0.024)  (0.015) Null 

 
 (0.097)  (0.025)  (0.013) Null 

 
 (0.084)  (0.022)  (0.022) Null 

                
RHL (-ρ)  

-0.383  0.897  0.175  Null 
 

-0.245  0.934  0.138  Null 
 

-0.156  0.959  0.106  Null 

 
 (0.090)  (0.024)  (0.015) Null 

 
 (0.097)  (0.025)  (0.013) Null 

 
 (0.109)  (0.028)  (0.024) Null 

                
RR  

-0.340  0.907  0.167  -0.454  
 

-0.215  0.941  0.133  -0.458  
 

-0.135  0.964  0.104  -0.446  

 
 (0.074)  (0.020)  (0.018)  (0.162) 

 
 (0.066)  (0.018)  (0.009)  (0.162) 

 
 (0.084)  (0.022)  (0.022)  (0.180) 

                
RHL  

-0.340  0.907  0.167  -0.453  
 

-0.215  0.941  0.133  -0.457  
 

-0.135  0.964  0.104  -0.444  

   (0.074)  (0.020)  (0.018)  (0.164)    (0.066)  (0.018)  (0.009)  (0.164)    (0.084)  (0.022)  (0.022)  (0.181) 
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Table 2 

Parameter Estimation Results of Simulation with T=1,000 

This table shows the result of parameter estimation of simulated 500 paths. Each path is produced from a discretized stochastic volatility model: 

 

𝑦𝑡 = 𝜎𝑡−1𝜀𝑡
𝑦
 

ln 𝜎𝑡 = 𝛼 + 𝛿 ln 𝜎𝑡−1 + 𝜐𝜀𝑡
𝜎 

 

where 𝜀𝑡
𝑦
 and 𝜀𝑡

𝜎 have a bivariate standard normal distribution with correlation 𝜌. The return and volatility series of each path has 1,000 lengths, so a 

trading day 𝑡 has a value from 1 to 1,000. During each time step from 𝑡 − 1 to 𝑡, there are 1,000 sub-periods. We set three different levels of persistence: 

“Low”, “Medium”, and “High”, by changing the values of volatility parameters. We vary the level of correlation: the case of -0.2 (Panel A), -0.4 (Panel B), 

and -0.6 (Panel C). Parameter estimation is conducted through different models. “SV” denotes the basic stochastic volatility model. “RR” denotes the 

stochastic volatility model incorporating ranges. “RHL” denotes the stochastic volatility model incorporating high and low prices. These values are means 

of estimates and the values in parenthesis are root mean square errors. 

Panel A: Parameter Estimation with ρ=-0.2 

    Low persistence   Medium persistence   High persistence 

    α δ ν ρ   α δ ν ρ   α δ ν ρ 

True 
 

-0.368  0.900  0.182  -0.200  
 

-0.184  0.950  0.130  -0.200  
 

-0.074  0.980  0.083  -0.200  

                
SV  

-0.442  0.880  0.188  -0.159  
 

-0.274  0.926  0.153  -0.151  
 

-0.171  0.954  0.122  -0.140  

 
 (0.139)  (0.037)  (0.022)  (0.107) 

 
 (0.129)  (0.034)  (0.028)  (0.116) 

 
 (0.126)  (0.033)  (0.040)  (0.134) 

                
RR   

-0.364  0.902  0.172  -0.144  
 

-0.211  0.943  0.133  -0.142  
 

-0.114  0.970  0.097  -0.143  

 
 (0.061)  (0.016)  (0.014)  (0.077) 

 
 (0.056)  (0.015)  (0.008)  (0.086) 

 
 (0.055)  (0.014)  (0.015)  (0.094) 

                
RHL   

-0.365  0.902  0.173  -0.143  
 

-0.212  0.943  0.133  -0.141  
 

-0.114  0.970  0.097  -0.142  

 
 (0.061)  (0.016)  (0.014)  (0.077)    (0.056)  (0.015)  (0.008)  (0.086)    (0.056)  (0.014)  (0.015)  (0.094) 
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Panel B: Parameter Estimation with ρ=-0.4 

    Low persistence   Medium persistence   High persistence 

    α δ ν ρ   α δ ν ρ   α δ ν ρ 

True 
 

-0.368  0.900  0.182  -0.400  
 

-0.184  0.950  0.130  -0.400  
 

-0.074  0.980  0.083  -0.400  

                
SV  

-0.429  0.883  0.186  -0.330  
 

-0.269  0.927  0.153  -0.327  
 

-0.168  0.955  0.123  -0.307  

 
 (0.120)  (0.033)  (0.019)  (0.116) 

 
 (0.115)  (0.031)  (0.028)  (0.123) 

 
 (0.114)  (0.030)  (0.041)  (0.149) 

                
RR   

-0.341  0.907  0.169  -0.297  
 

-0.198  0.946  0.131  -0.305  
 

-0.108  0.971  0.096  -0.309  

 
 (0.062)  (0.017)  (0.016)  (0.116) 

 
 (0.043)  (0.011)  (0.008)  (0.111) 

 
 (0.047)  (0.012)  (0.014)  (0.114) 

                
RHL   

-0.342  0.907  0.169  -0.296  
 

-0.199  0.946  0.131  -0.303  
 

-0.108  0.971  0.096  -0.307  

 
 (0.061)  (0.017)  (0.016)  (0.117)    (0.043)  (0.012)  (0.008)  (0.112)    (0.047)  (0.012)  (0.014)  (0.116) 

Panel C: Parameter Estimation with ρ=-0.6 

    Low persistence   Medium persistence   High persistence 

    α δ ν ρ   α δ ν ρ   α δ ν ρ 

True 
 

-0.368  0.900  0.182  -0.600  
 

-0.184  0.950  0.130  -0.600  
 

-0.074  0.980  0.083  -0.600  

                
SV  

-0.433  0.882  0.184  -0.502  
 

-0.272  0.926  0.151  -0.493  
 

-0.167  0.955  0.122  -0.454  

 
 (0.111)  (0.030)  (0.018)  (0.131) 

 
 (0.111)  (0.030)  (0.025)  (0.141) 

 
 (0.111)  (0.029)  (0.040)  (0.179) 

                
RR   

-0.322  0.912  0.164  -0.465  
 

-0.189  0.948  0.127  -0.473  
 

-0.101  0.972  0.094  -0.478  

 
 (0.065)  (0.017)  (0.020)  (0.144) 

 
 (0.036)  (0.010)  (0.007)  (0.139) 

 
 (0.040)  (0.011)  (0.012)  (0.139) 

                
RHL   

-0.322  0.911  0.164  -0.463  
 

-0.189  0.948  0.127  -0.471  
 

-0.102  0.972  0.094  -0.476  

 
 (0.065)  (0.017)  (0.020)  (0.146)    (0.036)  (0.010)  (0.007)  (0.140)    (0.041)  (0.011)  (0.012)  (0.141) 
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Table 3 

Ratio of Root Mean Square Error for Volatility with T=500 

This table reports means of the ratio of root mean square errors for volatility. Each simulated volatility series 

with 500 lengths is produced from the simulation in Table 1. Throughout the parameter estimation in Table 1, 

latent volatilities are estimated from the three SV, RR, and RHL. Using the simulated volatility series and the 

estimated volatility series, root mean square error is calculated per path. “SV/RR” denotes the value of the root 

mean square error from SV over that from RR. “SV/ RHL” denotes the value of the root mean square error from 

SV over that from RHL. “RR/ RHL” denotes the value of the root mean square error from RR over that from 

RHL. “RR (-ρ) / RR” denotes the value of the root mean square error from RR over that from RR (-ρ). “RHL (-ρ) 

/ RHL” denotes the value of the root mean square error from RR over that from RR (-ρ). From the 500 

simulated paths, this table shows means and 5% and 95% percentiles (values in parenthesis) of the ratios. 

Varying the levels of persistence and correlation, the ratio of root mean square error is calculated.  

Panel A: Low Persistence 

      

Model   ρ = -0.2 ρ = -0.4 ρ = -0.6 

     SV / RR 
 

1.55 (1.37, 1.78) 1.55 (1.36, 1.78) 1.54 (1.33, 1.77) 

     SV / RHL 
 

1.55 (1.36, 1.78) 1.55 (1.36, 1.77) 1.53 (1.32, 1.76) 

     RR / RHL 
 

1.00 (0.99, 1.01) 1.00 (0.99, 1.01) 1.00 (0.99, 1.01) 

     RR (-ρ) / RR 
 

1.01 (1.00, 1.02) 1.04 (1.02, 1.06) 1.10 (1.07, 1.14) 

     RHL (-ρ) / RHL 
 

1.01 (1.00, 1.02) 1.04 (1.02, 1.06) 1.10 (1.07, 1.14) 

         
Panel B: Medium Persistence 

      

Model   ρ = -0.2 ρ = -0.4 ρ = -0.6 

     SV / RR 
 

1.63 (1.38, 1.92) 1.62 (1.37, 1.91) 1.64 (1.38, 1.94) 

     SV / RHL 
 

1.63 (1.38, 1.92) 1.62 (1.37, 1.90) 1.64 (1.37, 1.95) 

     RR / RHL 
 

1.00 (0.99, 1.01) 1.00 (0.99, 1.01) 1.00 (0.99, 1.01) 

     RR (-ρ) / RR 
 

1.01 (1.00, 1.02) 1.04 (1.02, 1.06) 1.11 (1.07, 1.15) 

     RHL (-ρ) / RHL 
 

1.01 (1.00, 1.02) 1.04 (1.02, 1.06) 1.11 (1.07, 1.15) 

         
Panel C: High Persistence 

      

Model   ρ = -0.2 ρ = -0.4 ρ = -0.6 

     SV / RR 
 

1.72 (1.39, 2.12) 1.72 (1.38, 2.09) 1.76 (1.4, 2.21) 

     SV / RHL 
 

1.71 (1.39, 2.12) 1.72 (1.38, 2.09) 1.76 (1.40, 2.20) 

     RR / RHL 
 

1.00 (0.99, 1.01) 1.00 (0.98, 1.01) 1.00 (0.98, 1.01) 

     RR (-ρ) / RR 
 

1.01 (0.99, 1.02) 1.04 (1.01, 1.07) 1.10 (1.06, 1.15) 

     RHL (-ρ) / RHL 
 

1.01 (0.99, 1.02) 1.04 (1.01, 1.07) 1.10 (1.06, 1.15) 
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Table 4 

Ratio of Root Mean Square Error for Volatility with T=1,000 

This table reports means of the ratio of root mean square errors for volatility. Each simulated volatility series 

with 1,000 lengths is produced from the simulation in Table 2. Throughout the parameter estimation in Table 2, 

latent volatilities are estimated from the three SV, RR, and RHL models. Using the simulated volatility series 

and the estimated volatility series, root mean square error is calculated per path. “SV/RR” denotes the value of 

the root mean square error from SV over that from RR. “SV/ RHL” denotes the value of the root mean square 

error from SV over that from RHL. “RR/ RHL” denotes the value of the root mean square error from RR over 

that from RHL. From the simulated 500 paths, this table shows means and 5% and 95% percentiles (values in 

parenthesis) of the ratios. Varying the levels of persistence and correlation, the ratio of root mean square error is 

calculated. 

Panel A: Low Persistence 

      

Model   ρ = -0.2 ρ = -0.4 ρ = -0.6 

     SV / RR 
 

1.54 (1.39, 1.71) 1.54 (1.39, 1.70) 1.51 (1.36, 1.68) 

     SV / RHL 
 

1.54 (1.39, 1.70) 1.54 (1.39, 1.69) 1.51 (1.36, 1.68) 

     RR / RHL 
 

1.00 (0.99, 1.01) 1.00 (0.99, 1.01) 1.00 (0.99, 1.01) 

     
Panel B: Medium Persistence 

      

Model   ρ = -0.2 ρ = -0.4 ρ = -0.6 

     SV / RR 
 

1.60 (1.44, 1.80) 1.59 (1.41, 1.79) 1.58 (1.40, 1.79) 

     SV / RHL 
 

1.60 (1.44, 1.80) 1.59 (1.42, 1.79) 1.58 (1.39, 1.79) 

     RR / RHL 
 

1.00 (0.99, 1.01) 1.00 (0.99, 1.01) 1.00 (0.99, 1.01) 

     
Panel C: High Persistence 

      

Model   ρ = -0.2 ρ = -0.4 ρ = -0.6 

     SV / RR 
 

1.65 (1.42, 1.92) 1.66 (1.44, 1.93) 1.67 (1.41, 1.96) 

     SV / RHL 
 

1.65 (1.42, 1.92) 1.66 (1.43, 1.93) 1.67 (1.40, 1.95) 

     RR / RHL 
 

1.00 (0.99, 1.01) 1.00 (0.99, 1.01) 1.00 (0.99, 1.01) 
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Table 5 

Statistics for Indexes and E-mini Futures of S&P 500 and Nasdaq 100 

From June 21, 1999 to June 30, 2007, statistics for daily returns and ranges of S&P 500, Nasdaq 100, and their 

E-mini futures are reported. “Return” refers to open-to-close log returns, which are calculated from opening and 

closing prices. “High” refers to open-to-high log returns, which are calculated from the maximum and opening 

prices of each day. “Low” refers to open-to-low log returns, which are calculated from the minimum and 

opening prices of each day. “Range” refers to the difference between “High” and “Low”.  

  Mean Std Dev Skewness Kurtosis Min Max 

E-mini S&P 500 
     

Return (%) 0.0030  1.0836  -0.0016  5.7194  -6.3224  5.9496  

High (%) 0.7417  0.7174  2.9476  20.5970  0.0000  9.4103  

Low (%) -0.7909  0.7813  -2.1029  10.5684  -7.8328  0.0000  

Range *100 1.5327  0.9371  2.1188  11.8624  0.1897  9.4602  

       
S&P 500 

     
Return (%) 0.0064  1.1034  0.0791  5.6533  -6.0045  5.5720  

High (%) 0.6614  0.6985  2.2347  10.8393  0.0000  5.6786  

Low (%) -0.7051  0.7801  -2.1019  10.1275  -7.2775  0.0000  

Range *100 1.3665  0.8295  2.0272  10.6274  0.2474  8.4792  

    
     

E-mini Nasdaq 100 
     

Return (%) -0.0124  2.1409  0.0040  6.9938  -11.0383  14.8467  

High (%) 1.4038  1.4408  2.8688  17.8567  0.0000  17.2104  

Low (%) -1.4443  1.5379  -2.1510  9.5464  -13.2220  0.0000  

Range *100 2.8481  1.9894  1.8402  9.0674  0.2594  20.5918  

       
Nasdaq 100 

     
Return (%) -0.0284  2.0278  0.3586  9.4212  -9.8182  19.1698  

High (%) 1.2046  1.3193  3.2077  26.0899  0.0000  19.2548  

Low (%) -1.2650  1.3868  -2.4140  13.3041  -14.8486  0.0000  

Range *100 2.4696  1.7127  2.0979  11.9902  0.3842  19.2548  
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Table 6 

Parameter Estimates of E-mini S&P 500 and Nasdaq 100 Futures 

This table reports parameter estimates for E-mini S&P 500 and Nasdaq 100 Futures from June 21, 1999 to June 

30, 2007. The estimates are derived from the MCMC method and daily-scaled values. “SV” represents the 

model using open-to-close returns. “RR” represents the model using open-to-close returns and ranges. “RHL” 

represents the model using open-to-close, -low, and - high returns. Parentheses are the standard deviation of 

samplings.  

  𝛼 𝛿 𝜐 𝜌 

E-mini S&P 500 
   

SV -0.1430 (0.0302) 0.9697 (0.0064) 0.1095 (0.0120) -0.7645 (0.0501) 

RR -0.4996 (0.0634) 0.8936 (0.0133) 0.2141 (0.0112) -0.3835 (0.0314) 

RHL -0.4933 (0.0625) 0.8949 (0.0132) 0.2110 (0.0112) -0.3809 (0.0321) 

     
E-mini Nasdaq 100 

   

SV -0.0437 (0.0133) 0.9895 (0.0032) 0.0799 (0.0071) -0.5273 (0.0772) 

RR -0.2485 (0.0376) 0.9399 (0.0090) 0.1949 (0.0101) -0.3065 (0.0328) 

RHL -0.2396 (0.0375) 0.9420 (0.0089) 0.1905 (0.0103) -0.3083 (0.0344) 
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Table 7 

Statistics for Estimated Volatility of E-mini S&P 500 and Nasdaq 100 Futures 

This table shows some statistics and correlation of estimated volatility from SV, RR, and RHL. Using the 

MCMC estimation method, latent volatilities of E-mini S&P 500 and Nasdaq 100 futures from June 21, 1999 to 

June 30, 2007 are estimated. Statistics are annualized percent values. 

Correlation   Mean Std Dev Min Max 

E-mini S&P 500 SV RR RHL 
     

SV 1 0.9091  0.9099  
 

15.71  6.87  5.81  53.02  

RR 
 

1 0.9974  
 

15.31  7.40  4.52  63.19  

RHL 
  

1 
 

15.32  7.32  5.00  62.93  

         
E-mini Nasdaq 100 SV RR RHL 

     

SV 1 0.9459  0.9457  
 

29.32  16.86  8.67  87.76  

RR 
 

1 0.9981  
 

28.48  16.57  6.14  105.10  

RHL     1   28.54  16.56  7.34  103.94  

 

 

 

 

 

 

 

 

 

 

 

 



30 

 

Table 8 

Residual Diagnostics 

Statistics for residuals from SV, RR, and RHL are reported. Residuals are produced from each measurement 

equation of the discretized return processes by applying the estimation to daily E-mini S&P 500 and Nasdaq 100 

Futures data from June 21, 1999 to June 30, 2007. Moments and autocorrelations for residuals are shown in this 

table. 

  Moments   Autocorrelations 

Model Mean Std Dev Skewness Kurtosis   Lag 1 Lag 5 Lag 10 

E-mini S&P 500 
       

SV 0.001  0.961  -0.241  2.912  
 

-0.007  -0.015  0.007  

RR 0.071  0.980  0.084  2.718  
 

-0.015  -0.025  0.015  

RHL 0.071  0.978  0.080  2.713  
 

-0.014  -0.025  0.014  

         
E-mini Nasdaq 100 

       

SV 0.005  0.967  -0.145  2.819  
 

-0.001  -0.007  -0.012  

RR 0.055  0.984  0.066  2.760  
 

0.003  -0.008  -0.010  

RHL 0.055  0.982  0.068  2.758    0.002  -0.008  -0.009  
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Figure 1. Monthly estimated volatility of E-mini S&P 500 Futures from SV, RR, and RHL. This figure 

plots monthly volatility estimates of E-mini S&P 500 Futures from June 21, 1999 to June 30, 2007. The 

volatility is estimated from daily data, and then plotted monthly. The scale of estimates is yearly percent. The 

top panel is a comparison between volatility of SV model and that of RR. The middle panel is a comparison 

between volatility of SV model and that of RHL. The lower panel is a comparison between volatility of RR and 

that of RHL. 
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Figure 2. Monthly estimated volatility of E-mini Nasdaq 100 Futures from SV, RR, and RHL. This figure 

plots monthly volatility estimates of E-mini Nasdaq 100 Futures from June 21, 1999 to June 30, 2007. The 

volatility is estimated from daily data, and then plotted monthly. The scale of estimates is yearly percent. The 

top panel is a comparison between volatility of SV model and that of RR. The middle panel is a comparison 

between volatility of SV model and that of RHL. The lower panel is a comparison between volatility of RR and 

that of RHL. 
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Figure 3. Distributions of return residuals of E-mini S&P 500 Futures. This figure shows the distribution of 

return residuals of E-mini S&P 500 Futures from June 21, 1999 to June 30, 2007. The residuals are standardized 

innovations of measurement equations. QQ plots are on the left and histograms are on the right. The top panel is 

the distribution of residuals from SV model. The middle panel is the distribution of residuals from RR. The 

lower panel is the distribution of residuals from RHL. 
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Figure 4. Distributions of return residuals of E-mini Nasdaq 100 Futures. This figure shows the distribution 

of return residuals of E-mini Nasdaq 100 Futures from June 21, 1999 to June 30, 2007. The residuals are 

standardized innovations of measurement equations. QQ plots are on the left and histograms are on the right. 

The top panel is the distribution of residuals from SV model. The middle panel is the distribution of residuals 

from RR. The lower panel is the distribution of residuals from RHL. 


